2023-01-01 null null 20(卷), null(期), (null页)
Water management is becoming a critical issue for sustainable agriculture, especially in the semi-arid region, where problems with water scarcity are rising. More accurate water status recovery in crops is required for precise irrigation through remote sensing technologies. These technologies have a lot of potential in intelligent irrigation because they allow for real-time environmental data collection. Nowadays, digital practices have been used, such as unmanned aerial vehicle (UAV), which plays an essential role in various applications related to crop management. Drones offer an exciting opportunity to track crop fields with high spatial and temporal resolution remote sensing to enhance water stress management in irrigation. Farmers have historically depended on soil moisture measurements and weather conditions to detect crop water status for irrigation scheduling. This review paper summarizes the use of UAV remote sensing data in crops for estimating the water status and gives a detailed summary of the potential capacity of UAV remote sensing for water stress application. The remote sensing techniques help modify agricultural practices to meet this significant challenge by providing repeated information on crop status at different scales and various performances during the season. UAVs successful implementation in water stress estimations depends on UAV features, such as flexibility of use in flight planning, low cost, reliability, autonomy, and capability of timely provision of high-resolution data. UAV with a thermal sensor is considered the most effective technique for detecting water stress using specific indices. Thermal imaging can identify water status variations and crop water stress index (CWSI). This CWSI acquired through UAV thermal sensors imagery can be acceptable for managing real-time irrigation to achieve optimum crop water efficiency.