2025-04-02 null null 17(卷), null(期), (null页)
Regional mapping of Above Ground Biomass Density (AGBD) using Remote Sensing data has shown high accuracy but lacks replicability at a global scale. In contrast, global models capture AGBD variability across biomes but struggle with biome-specific accuracy. To address this gap, we develop and assess the performance of a Deep Learning model for mapping AGBD at 10-m resolution using multi-source satellite data (Sentinel-1, Sentinel-2, ALOS PALSAR-2, and GEDI) across four biomes: Mediterranean, taiga (boreal forests), tropical rainforests, and semi-arid savannas. The model is trained and validated separately for each biome, yielding four regional models with normalized RMSEs of 0.43-0.67 and correlation coefficients (r) of 0.61-0.77 against forest inventories. We compare predictions from these models to a benchmark dataset and to a model trained on all four biomes combined. The regional models consistently outperform both, achieving better metrics than the benchmark. Additionally, an analysis of prediction drivers reveals biome-specific differences, reinforcing the importance of per-biome mapping approaches. This study highlights the advantages and limitations of regional against global modeling, creating the basis for biome-specific, replicable, scalable and multi-temporal AGBD mapping.