Soil organic matter (SOM) is crucial for karst ecosystems, affecting cropland health, climate change mitigation, and rocky desertification control. However, there are limited research on cropland SOM prediction in karst areas with complex topography and diverse microclimates. Here, we compared the performance of four machine learning algorithms-random forest (RF), support vector regression (SVR), multilayer perceptron regression (MLP), and gradient boosting regression trees (GBRT)-for predicting cropland SOM in a typical karst landform area in 2019. Our results indicated that the GBRT model achieved the highest prediction accuracy with an R2 2 of 0.69, MAE of 2.19 g/kg, RMSE of 3.37 g/kg, and LCCC of 0.82. Using the GBRT model and spatial data on climate, topography, and remote sensing, we predicted SOM for each 30 m x 30 m grid cell. The analysis revealed higher SOM content in the northeastern and southwestern regions and lower content in the central area, ranging from 13.95 to 47.81 g/kg, with an average of 27.16 g/kg. Lime soil had the highest SOM content, while purple soil had the lowest. Paddy fields showed significantly higher SOM than dry land. Over the past 40 years, SOM content has slightly increased, while its spatial distribution has remained stable.