The Relationships Between Vegetation Changes and Groundwater Table Depths for Woody Plants in the Sangong River Basin, Northwest China

Woody plants serve as crucial ecological barriers surrounding oases in arid and semi-arid regions, playing a vital role in maintaining the stability and supporting sustainable development of oases. However, their sparse distribution makes significant challenges in accurately mapping their spatial extent using medium-resolution remote sensing imagery. In this study, we utilized high-resolution Gaofen (GF-2) and Landsat 5/7/8 satellite images to quantify the relationship between vegetation growth and groundwater table depths (GTD) in a typical inland river basin from 1988 to 2021. Our findings are as follows: (1) Based on the D-LinkNet model, the distribution of woody plants was accurately extracted with an overall accuracy (OA) of 96.06%. (2) Approximately 95.33% of the desert areas had fractional woody plant coverage (FWC) values of less than 10%. (3) The difference between fractional woody plant coverage and fractional vegetation cover proved to be a fine indicator for delineating the range of desert-oasis ecotone. (4) The optimal GTD for Haloxylon ammodendron and Tamarix ramosissima was determined to be 5.51 m and 3.36 m, respectively. Understanding the relationship between woody plant growth and GTD is essential for effective ecological conservation and water resource management in arid and semi-arid regions.

相关推荐