2024-02-01 null null 83(卷), null(期), (null页)
Gullying is one of the problems that cause soil degradation in semi-arid areas and should be predicted to mitigate its damaging effects. Three machine learning models have been employed in this work to map the susceptibility to gully erosion in the N'fis river basin in the Moroccan High Atlas. Utilizing high-resolution images from Google Earth alongside fieldwork data, we digitized 434 gully erosion events to construct the comprehensive inventory map. These data were divided into two groups: training (70%) and test (30%). Based on the literature research and the multicollinearity test, 11 conditioning factors were selected. The receiver operating characteristic (ROC) approach and other statistical measures were used to quantify the model's accuracy. The study findings highlight the significance of drainage density, slope, NDVI, and distance from roads as crucial factors influencing gully erosion in the study area. Among the evaluated machine learning algorithms, the random forest (RF) model exhibited the highest performance, with an area under the curve (AUC) value of 0.932. It was followed by adaptive boosting (AB) with an AUC of 0.902 and gradient-boosted decision trees (GBDT) with an AUC of 0.893. The maps produced reveal that the southern and central regions of the study area have the classes of very high and high gully erosion susceptibility. The outputs of the current study can be used by decision-makers to improve prevention planning and mitigation techniques against gully erosion damage.