Mukomberanwa, Nobert Tafadzwa , Taru, Phillip , Utete, Beaven , Ngorima, Patmore
2025-12-31 null null 11(卷), null(期), (null页)
The African savannah elephant (Loxodonta africana) migrate in landscapes with patchily distributed food resources in semi-arid environments. GPS collar data in combination with the Minimum Convex Polygon approach (100% MCP) can be utilised to investigate elephant home ranges and spatial ecology. Mapping of suitable habitats in landscapes with isolated and patchy resources housing threatened and endangered species like the African savannah elephant is critical for conservation of their natural habitat. This study aimed to: (i) investigate the seasonal ranging patterns of the African savannah elephants and (ii) model the preferred habitat of the African savannah elephants in Mana Pools National Park (MNP) in Zimbabwe. Minimum Convex Polygon method was employed to delineate elephant home ranges and the MaxEnt algorithm was used to model their habitat preferences. There were significant differences (p < 0.05) in the size of the home ranges across all the three demarcated seasons (wet, transitional and dry). Elephant habitat preference is mainly driven by the presence, quantity and quality of palatable vegetation close to the Zambezi River in the Mana Pools National Park. GPS telemetry provides smart data for understanding elephant behaviour and movement patterns in semi-arid environments across seasons.