Spatially and temporally explicit canopy water content (CWC) data are important for monitoring vegetation status, and constitute essential information for studying ecosystem-climate interactions. Despite many efforts there is currently no operational CWC product available to users. In the context of the Satellite Application Facility for Land Surface Analysis (LSA-SAF), we have developed an algorithm to produce a global dataset of CWC based on data from the Advanced Very High Resolution Radiometer (AVHRR) sensor on board Meteorological-Operational (MetOp) satellites forming the EUMETSAT Polar System (EPS). CWC reflects the water conditions at the leaf level and information related to canopy structure. An accuracy assessment of the EPS/AVHRR CWC indicated a close agreement with multi-temporal ground data from SMAPVEX16 in Canada and Dahra in Senegal, with RMSE of 0.19 kg m(-2) and 0.078 kg m(-2) respectively. Particularly, when the Normalized Difference Infrared Index (NDII) was included the algorithm was better constrained in semi-arid regions and saturation effects were mitigated in dense canopies. An analysis of spatial scale effects shows the mean bias error in CWC retrievals remains below 0.001 kg m(-2) when spatial resolutions ranging from 20 m to 1 km are considered. The present study further evaluates the consistency of the LSA-SAF product with respect to the Simplified Level 2 Product Prototype Processor (SL2P) product, and demonstrates its applicability at different spatio-temporal resolutions using optical data from MSI/Sentinel-2 and MODIS/Terra & Aqua. Results suggest that the LSA-SAF EPS/AVHRR algorithm is robust, agrees with the CWC dynamics observed in available ground data, and is also applicable to data from other sensors. We conclude that the EPS/AVHRR CWC product is a promising tool for monitoring vegetation water status at regional and global scales.