Historical Evolution and Future Trends of Precipitation Based on Integrated Datasets and Model Simulations of Arid Central Asia

  • JCR分区:

    影响因子:

  • Earth system models (ESMs) are important tools for assessing the historical characteristics and predicting the future characteristics of precipitation, yet the quantitative understanding of how these land-atmospheric coupling models perform in simulating precipitation characteristics remains limited. This study conducts a comprehensive evaluation of precipitation changes simulated by 43 ESMs in CMIP5 and 32 ESMs in CMIP6 in Arid Central Asia (ALL) and its two sub-regions for 1959-2005 with reference to Climate Research Unit (CRU) data, and predicts precipitation changes for 2054-2100. Our analyses suggest the following: (a) no single model consistently outperformed the others in all aspects of simulated precipitation variability (annual averages, long-term trends, and climatological monthly patterns); (b) the CMIP5 and CMIP6 model simulations tended to overestimate average annual precipitation for most of the ALL region, especially in the Xinjiang Uygur Autonomous Region of China (XJ); (c) most model simulations projected a stronger increasing trend in average annual precipitation; (d) although all the model simulations reasonably captured the climatological monthly precipitation, there was an underestimation; (e) compared to CMIP5, most CMIP6 model simulations exhibited an enhanced capacity to simulate precipitation across all aspects, although discrepancies persisted in individual sub-regions; (f) it was confirmed that the multi-model ensemble mean (MME) provides a more accurate representation of the three aspects of precipitation compared to the majority of single-model simulations. Lastly, the values of precipitation predicted by the more efficient models across the ALL region and its sub-regions under the different scenarios showed an increasing trend in most seasons. Notably, the strongest increasing trend in precipitation was seen under the high-emission scenarios.