兰州大学循证社会科学交叉创新实验室 Innovation Laboratory of Evidence-based Social Sciences,Lanzhou University

The use of predictive fall models for older adults receiving aged care, using routinely collected electronic health record data: A systematic review

2022-03-16

BACKGROUND: Falls in older adults remain a pressing health concern. With advancements in data analytics and increasing uptake of electronic health records, developing comprehensive predictive models for fall risk is now possible. We aimed to systematically identify studies involving the development and implementation of predictive falls models which used routinely collected electronic health record data in home-based, community and residential aged care settings. METHODS: A systematic search of entries in Cochrane Library, CINAHL, MEDLINE, Scopus, and Web of Science was conducted in July 2020 using search terms relevant to aged care, prediction, and falls. Selection criteria included English-language studies, published in peer-reviewed journals, had an outcome of falls, and involved fall risk modelling using routinely collected electronic health record data. Screening, data extraction and quality appraisal using the Critical Appraisal Skills Program for Clinical Prediction Rule Studies were conducted. Study content was synthesised and reported narratively. RESULTS: From 7,329 unique entries, four relevant studies were identified. All predictive models were built using different statistical techniques. Predictors across seven categories were used: demographics, assessments of care, fall history, medication use, health conditions, physical abilities, and environmental factors. Only one of the four studies had been validated externally. Three studies reported on the performance of the models. CONCLUSIONS: Adopting predictive modelling in aged care services for adverse events, such as falls, is in its infancy. The increased availability of electronic health record data and the potential of predictive modelling to document fall risk and inform appropriate interventions is making use of such models achievable. Having a dynamic prediction model that reflects the changing status of an aged care client is key to this moving forward for fall prevention interventions.

研究类型
系统评价
人群
老年人
主题
["技术资源","医疗服务信息","医疗护理"]
作者
Karla Seaman , Kristiana Ludlow , Nasir Wabe , Laura Dodds , Joyce Siette , Amy Nguyen , Mikaela Jorgensen , Stephen R Lord , Jacqueline C T Close , Libby O'Toole , Caroline Lin , Annaliese Eymael , Johanna Westbrook
国家
Australia
关键词
Older adults, Falls, Aged care, Predictive modelling, Fall risk, Health informatics, Information technology, Health & safety, Quality in health care, Risk management
发布日期
2022-03-16
相关网址
https://www.healthsystemsevidence.org/articles/62fe6fc6ef088708d8e0e931-the-use-of-predictive-fall-models-for-older-adults-receiving-aged-care-using-routinely-collected-electronic-health-record-data-a-systematic-review?source=saved_email
DOI
10.1186/s12877-022-02901-2
学科领域
DiseasesOtherAccidents/injuriesSectorsLong-term care