兰州大学循证社会科学交叉创新实验室 Innovation Laboratory of Evidence-based Social Sciences,Lanzhou University

Personalization strategies in digital mental health interventions: A systematic review and conceptual framework for depressive symptoms

2023-05-22

Introduction: Personalization is a much-discussed approach to improve adherence and outcomes for Digital Mental Health interventions (DMHIs). Yet, major questions remain open, such as (1) what personalization is, (2) how prevalent it is in practice, and (3) what benefits it truly has.

Methods: We address this gap by performing a systematic literature review identifying all empirical studies on DMHIs targeting depressive symptoms in adults from 2015 to September 2022. The search in Pubmed, SCOPUS and Psycinfo led to the inclusion of 138 articles, describing 94 distinct DMHIs provided to an overall sample of approximately 24,300 individuals.

Results: Our investigation results in the conceptualization of personalization as purposefully designed variation between individuals in an intervention's therapeutic elements or its structure. We propose to further differentiate personalization by what is personalized (i.e., intervention content, content order, level of guidance or communication) and the underlying mechanism [i.e., user choice, provider choice, decision rules, and machine-learning (ML) based approaches]. Applying this concept, we identified personalization in 66% of the interventions for depressive symptoms, with personalized intervention content (32% of interventions) and communication with the user (30%) being particularly popular. Personalization via decision rules (48%) and user choice (36%) were the most used mechanisms, while the utilization of ML was rare (3%). Two-thirds of personalized interventions only tailored one dimension of the intervention.

Discussion: We conclude that future interventions could provide even more personalized experiences and especially benefit from using ML models. Finally, empirical evidence for personalization was scarce and inconclusive, making further evidence for the benefits of personalization highly needed.

研究类型
系统评价
人群
成年人
主题
["心理/精神卫生","技术资源"]
作者
Silvan Hornstein, Kirsten Zantvoort, Ulrike Lueken, Burkhardt Funk, Kevin Hilbert
国家
Germany
关键词
depression; digital mental health; personalization; precision care, iCBT, machine learning
来源期刊
Frontiers in digital health
发布日期
2023-05-22
相关网址
https://www.healthsystemsevidence.org/articles/6487458c2be1350023c082b0-personalization-strategies-in-digital-mental-health-interventions-a-systematic-review-and-conceptual-framework-for-depressive-symptoms?source=doc_export
DOI
10.3389/fdgth.2023.1170002
学科领域
DiseasesOtherMental health and addictions