Pharmaceutics .

ISSN:

国家:

Spain

影响因子:

SCIE收录情况:

JCR分区:

Del Valle-Moreno P, Suarez-Casillas P, Mejías-Trueba M, Ciudad-Gutiérrez P, Guisado-Gil AB, Gil-Navarro MV, Herrera-Hidalgo L.; Del Valle-Moreno P, Suarez-Casillas P, Mejías-Trueba M, Ciudad-Gutiérrez P, Guisado-Gil AB, Gil-Navarro MV, Herrera-Hidalgo L.
2023-07 相关链接

摘要

BACKGROUND: Pharmacokinetic nomograms, equations, and software are considered the main tools available for Therapeutic Drug Monitoring (TDM). Model-informed precision dosing (MIPD) is an advanced discipline of TDM that allows dose individualization, and requires a software for knowledge integration and statistical calculations. Due to its precision and extensive applicability, the use of these software is widespread in clinical practice. However, the currently available evidence on these tools remains scarce. OBJECTIVES: To review and summarize the available evidence on MIPD software tools to facilitate its identification, evaluation, and selection by users. METHODS: An electronic literature search was conducted in MEDLINE, EMBASE, OpenAIRE, and BASE before July 2022. The PRISMA-ScR was applied. The main inclusion criteria were studies focused on developing software for use in clinical practice, research, or modelling. RESULTS: Twenty-eight software were classified as MIPD software. Ten are currently unavailable. The remaining 18 software were described in depth. It is noteworthy that all MIPD software used Bayesian statistical methods to estimate drug exposure and all provided a population model by default, except NONMEN. CONCLUSIONS: Pharmacokinetic software have become relevant tools for TDM. MIPD software have been compared, facilitating its selection for use in clinical practice. However, it would be interesting to standardize the quality and validate the software tools.

技术资源 ; 医疗服务技术

混合人群

Not Available

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。