Cancers (Basel) .

ISSN:

国家:

United States

影响因子:

SCIE收录情况:

JCR分区:

Raj H Patel;Emilie A Foltz;Alexander Witkowski;Joanna Ludzik; Raj H Patel;Emilie A Foltz;Alexander Witkowski;Joanna Ludzik
2023-09 相关链接

摘要

BACKGROUND: Melanoma, the deadliest form of skin cancer, poses a significant public health challenge worldwide. Early detection is crucial for improved patient outcomes. Non-invasive skin imaging techniques allow for improved diagnostic accuracy; however, their use is often limited due to the need for skilled practitioners trained to interpret images in a standardized fashion. Recent innovations in artificial intelligence (AI)-based techniques for skin lesion image interpretation show potential for the use of AI in the early detection of melanoma. OBJECTIVE: The aim of this study was to evaluate the current state of AI-based techniques used in combination with non-invasive diagnostic imaging modalities including reflectance confocal microscopy (RCM), optical coherence tomography (OCT), and dermoscopy. We also aimed to determine whether the application of AI-based techniques can lead to improved diagnostic accuracy of melanoma. METHODS: A systematic search was conducted via the Medline/PubMed, Cochrane, and Embase databases for eligible publications between 2018 and 2022. Screening methods adhered to the 2020 version of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Included studies utilized AI-based algorithms for melanoma detection and directly addressed the review objectives. RESULTS: We retrieved 40 papers amongst the three databases. All studies directly comparing the performance of AI-based techniques with dermatologists reported the superior or equivalent performance of AI-based techniques in improving the detection of melanoma. In studies directly comparing algorithm performance on dermoscopy images to dermatologists, AI-based algorithms achieved a higher ROC (>80%) in the detection of melanoma. In these comparative studies using dermoscopic images, the mean algorithm sensitivity was 83.01% and the mean algorithm specificity was 85.58%. Studies evaluating machine learning in conjunction with OCT boasted accuracy of 95%, while studies evaluating RCM reported a mean accuracy rate of 82.72%. CONCLUSIONS: Our results demonstrate the robust potential of AI-based techniques to improve diagnostic accuracy and patient outcomes through the early identification of melanoma. Further studies are needed to assess the generalizability of these AI-based techniques across different populations and skin types, improve standardization in image processing, and further compare the performance of AI-based techniques with board-certified dermatologists to evaluate clinical applicability.

artificial intelligence; deep learning; dermoscopy; early detection; in vivo imaging; melanoma; neural network; non-invasive imaging; optical coherence tomography; reflectance confocal microscopy.

医疗服务技术 ; 信息资源

混合人群

Not Available

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。