所有资源

共检索到2
...
Predictive value of machine learning for breast cancer recurrence: A systematic review and meta-analysis
Purpose: Recurrence of breast cancer leads to a high lifetime risk and a low 5 year survival rate. Researchers have used machine learning to predict the risk of recurrence in patients with breast cancer, but the predictive performance of machine learning remains controversial. Hence, this study aimed to explore the accuracy of machine learning in predicting breast cancer recurrence risk and aggregate predictive variables to provide guidance for the development of subsequent risk scoring systems. Methods: We searched Pubmed, EMBASE, Cochrane, and Web of Science. The risk of bias in the included studies was evaluated using prediction model risk of bias assessment tool (PROBAST). Meta-regression was adopted to explore whether there was a significant difference in the recurrence time by machine learning. Results: Thirty-four studies involving 67,560 subjects were included, among whom 8695 experienced breast cancer recurrence. The c-index of prediction models was 0.814 (95%CI 0.802-0.826) and 0.770 (95%CI 0.737-0.803) in the training and validation sets, respectively; the sensitivity and specificity were 0.69 (95% CI 0.64-0.74), 0.89 (95% CI 0.86-0.92) in the training, and 0.64 (95% CI 0.58-0.70), 0.88 (95% CI 0.82-0.92) in the validation, respectively. Age, histological grading, and lymph node status are the most commonly used variables in model construction. Attention should be paid to unhealthy lifestyles such as drinking, smoking and BMI as modeling variables. Risk prediction models based on machine learning have long-term monitoring value for breast cancer population, and subsequent studies should consider using large-sample and multi-center data to establish risk equations for verification. Conclusion: Machine learning may be used as a predictive tool for breast cancer recurrence. Currently, there is a lack of effective and universally applicable machine learning models in clinical practice. We expect to incorporate multi-center studies in the future and attempt to develop tools for predicting breast cancer recurrence risk, so as to effectively identify populations at high risk of recurrence and develop personalized follow-up strategies and prognostic interventions to reduce the risk of recurrence.
研究证据
...
Reporting and risk of bias of prediction models based on machine learning methods in preterm birth: A systematic review
IntroductionThere was limited evidence on the quality of reporting and methodological quality of prediction models using machine learning methods in preterm birth. This systematic review aimed to assess the reporting quality and risk of bias of a machine learning-based prediction model in preterm birth. Material and methodsWe conducted a systematic review, searching the PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure, China Biology Medicine disk, VIP Database, and WanFang Data from inception to September 27, 2021. Studies that developed (validated) a prediction model using machine learning methods in preterm birth were included. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement and Prediction model Risk of Bias Assessment Tool (PROBAST) to evaluate the reporting quality and the risk of bias of included studies, respectively. Findings were summarized using descriptive statistics and visual plots. The protocol was registered in PROSPERO (no. CRD 42022301623). ResultsTwenty-nine studies met the inclusion criteria, with 24 development-only studies and 5 development-with-validation studies. Overall, TRIPOD adherence per study ranged from 17% to 79%, with a median adherence of 49%. The reporting of title, abstract, blinding of predictors, sample size justification, explanation of model, and model performance were mostly poor, with TRIPOD adherence ranging from 4% to 17%. For all included studies, 79% had a high overall risk of bias, and 21% had an unclear overall risk of bias. The analysis domain was most commonly rated as high risk of bias in included studies, mainly as a result of small effective sample size, selection of predictors based on univariable analysis, and lack of calibration evaluation. ConclusionsReporting and methodological quality of machine learning-based prediction models in preterm birth were poor. It is urgent to improve the design, conduct, and reporting of such studies to boost the application of machine learning-based prediction models in preterm birth in clinical practice.
期刊论文
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页