Disease-specific data processing: An intelligent digital platform for diabetes based on model prediction and data analysis utilizing big data technology
Kong, Xiangyong
Peng, Ruiyang
Dai, Huajie
Show more
Li, Yichi
Lu, Yanzhuan
Sun, Xiaohan
Zheng, Bozhong
Wang, Yuze
Zhao, Zhiyun
Liang, Shaolin
Xu, Min
Close more
Kong, XY (通讯作者),Univ Shanghai Sci & Technol, Sch Hlth Sci & Engn, Shanghai, Peoples R China.;Xu, M (通讯作者),Shanghai Jiao Tong Univ, Ruijin Hosp, Shanghai Inst Endocrine & Metab Dis, Dept Endocrine & Metab Dis,Sch Med, Shanghai, Peoples R China.
BackgroundArtificial intelligence technology has become a mainstream trend in the development of medical informatization. Because of the complex structure and a large amount of medical data generated in the current medical informatization process, big data technology to assist doctors in scientific research and analysis and obtain high-value information has become indispensable for medical and scientific research. MethodsThis study aims to discuss the architecture of diabetes intelligent digital platform by analyzing existing data mining methods and platform building experience in the medical field, using a large data platform building technology utilizing the Hadoop system, model prediction, and data processing analysis methods based on the principles of statistics and machine learning. We propose three major building mechanisms, namely the medical data integration and governance mechanism (DCM), data sharing and privacy protection mechanism (DPM), and medical application and medical research mechanism (MCM), to break down the barriers between traditional medical research and digital medical research. Additionally, we built an efficient and convenient intelligent diabetes model prediction and data analysis platform for clinical research. ResultsResearch results from this platform are currently applied to medical research at Shanghai T Hospital. In terms of performance, the platform runs smoothly and is capable of handling massive amounts of medical data in real-time. In terms of functions, data acquisition, cleaning, and mining are all integrated into the system. Through a simple and intuitive interface operation, medical and scientific research data can be processed and analyzed conveniently and quickly. ConclusionsThe platform can serve as an auxiliary tool for medical personnel and promote the development of medical informatization and scientific research. Also, the platform may provide the opportunity to deliver evidence-based digital therapeutics and support digital healthcare services for future medicine.