人工智能(AI)和生物技术的融合虽然处于起步阶段,但带来了重大的机遇和风险,需要积极的政策来管理这些新兴技术。尽管人工智能继续具有重大和广泛的影响,但当与其他新兴技术相结合时,其相关性和复杂性会放大。机器学习(ML)是人工智能的一个子集,尤其是与基因编辑(GE)的融合,可以带来巨大的好处,也可以带来从道德到国家安全的巨大风险。这些复杂的技术对多个部门都有影响,从农业和医学到经济竞争和国家安全。考虑到不同地理区域的技术进步和政策,以及多个组织的参与,进一步混淆了这种复杂性。随着ML和GE影响的扩大,需要前瞻性政策来降低风险和利用机遇。因此,本研究探讨了ML和GE交叉的技术和政策影响,重点关注美国、英国、中国和欧盟。对一段时间以来技术和政策发展的分析以及对其现状的评估为政策建议提供了依据,这些建议有助于管理技术进步的有益利用及其融合,并可应用于其他部门。本报告旨在促使决策者思考如何最好地实现这两种技术的融合。技术从业者也可能发现,作为一种资源,考虑利益相关者参与的信息和政策类型是很有价值的 
A study earlier this year asserted China has a “stunning lead” in essential technologies. And it wasn't the first time this claim has been made. But are these claims based in reality? When assessing the global impact and reach of American companies like Amazon, Apple, OpenAI, Boeing, Moderna, Microsoft, and Google, it's not immediately clear the United States is lagging in technological innovation. But the challenge is understanding exactly how to measure a “technology competition” or “strategic competition.” Typically, competitions involve scores, winners, and losers. But how does one keep score in technology competition? Is it the number of patents, academic publications, leading educational institutions, or multibillion-dollar companies? Or is the appropriate scoring system a more-complex mixture of these, and other, factors? The competition between the United States and China is a multidimensional contest involving technological, economic, military, and political elements. To accurately assess the United States' standing in this competition, we need to shift our focus from measures (raw numerical data) to metrics, which offer meaningful interpretations of these numbers. This pivot illuminates the contrasts between a free-market economy and a state-driven one.
解决人工智能带来的潜在风险可以从简单的步骤开始,比如找到合适的风险管理方法,进行研究以确定人工智能如何更好地满足设计师的意图,以及设计应对人工智能系统中与种族主义、性别歧视和其他偏见有关的问题。