The Influences of Evaporation and Aquitard on Groundwater Dynamics and Solute Transport in a Tidal Flat With a Slope Break

https://doi.org/10.1029/2024WR038231
2025-01-10
Water Resources Research . Volume 61 , issue 1
Manhua Luo, Hailong Li, Gang Li, Wei Wang, Shengchao Yu, Qian Ma, Yan Zheng

Abstract

Coastal groundwater dynamics and solute transport were influenced by multiple factors including aquitards, tides, evaporation, and slope breaks in coastal aquifers. However, quantification of the impacts of these factors on groundwater flow and salinity distribution remains a challenge. In this study, both field observations and numerical modeling were applied to investigate hydraulic heads and groundwater salinity in a tidal flat with large-scale seepage faces at Laizhou Bay, China. Results showed that seepage-face evaporation increased groundwater salinity landward and promoted groundwater and salt exchange within the intertidal zone significantly in comparison to the case without evaporation. Seawater infiltrated the aquifer on the left of the slope break and discharged on the right, forming a groundwater circulation cell, which notably influenced leakage flow between unconfined and confined aquifers through the aquitard. The aquitard prevented approximately 85% of inland freshwater discharge near the slope break, resulting in the formation of two atypical freshwater discharge tubes in the upper and middle intertidal zones. Two additional groundwater circulation cells developed in the lower intertidal zone due to the spring-neap tidal cycle. The outflow and inflow fluxes over a spring-neap tidal cycle were numerically estimated to be 1.46 and 1.27 m2/d, respectively, with evaporation accounting for 45% of the outflow flux. These findings provide significant insights for further investigations on groundwater dynamics and solute transport in multi-layered coastal aquifers, and have strong implications for biogeochemical processes within the intertidal zone.