The Easton metamorphic suite is a Mesozoic era subduction complex in northwest and central Washington, USA, which contains amphibolite-facies units structurally overlying separate high- and low-grade blueschist units. New structural, petrographic, and geochronologic data record a complex history related to Early Jurassic subduction initiation. Two types of amphibolite occur as (1) meter-scale coarse garnet amphibolite blocks with an upper amphibolite- to granulite-facies assemblage and (2) continuous layers of ≤10-m-thick foliated garnet amphibolite. The amphibolite blocks are encased in the foliated amphibolite, quartzose schist, and serpentinite. Garnet Lu-Hf geochronology records prograde garnet growth at 203 Ma in the amphibolite blocks and 183 Ma in the foliated amphibolite unit. In situ titanite U-Pb ages on amphibolite blocks, quartzose schist, and foliated amphibolite cluster at 168−163 Ma, with minor inherited components of up to 200 Ma. Amphibole 40Ar/39Ar cooling ages from the amphibolite blocks are 160−158 Ma, which is slightly younger than previously published 40Ar/39Ar cooling ages of 167−165 Ma from the foliated amphibolite. The deformation-temperature-time history of foliated amphibolite records subduction initiation in the Easton metamorphic suite at ca. 183 Ma, followed by cooling to high-grade blueschist facies, ∼500−600 °C, at ca. 165 Ma, and <400 °C by ca. 160 Ma. The 203 Ma coarse amphibolite blocks may have formed in an earlier metamorphic belt before being incorporated into the newly initiated subduction zone at 183 Ma, though an older age of subduction initiation is possible. Combined with existing data from the lower-grade regional blueschists that lie structurally beneath the high-grade rocks, the Easton metamorphic suite preserves >70 m.y. of subduction metamorphism and deformation. Early Jurassic subduction initiation in both the Easton metamorphic suite and the Franciscan Complex of California, USA, reflects broadly synchronous initiation of east-dipping subduction along portions of the Cordilleran margin by 183−176 Ma.