Uncertainties in the effects of organic aerosol coatings on polycyclic aromatic hydrocarbon concentrations and their estimated health effects

https://doi.org/10.5194/acp-25-8163-2025,
2025-07-30
Atmospheric Chemistry and Physics . Volume 25 , issue 14
Abstract

We used the CAM5 model to examine how different particle-bound polycyclic aromatic hydrocarbon (PAH) degradation approaches affect the spatial distribution of benzo(a)pyrene (BaP). Three approaches were evaluated: NOA (no effect of OA coatings state on BaP), shielded (viscous OA coatings shield BaP from oxidation under cool and dry conditions) and ROI-T (viscous OA coatings slow BaP oxidation in response to temperature and humidity). Results show that BaP concentrations vary seasonally, influenced by emissions, deposition, transport and degradation approach, all of which are influenced by meteorological conditions. All simulations predict higher population-weighted global average (PWGA) fresh BaP concentrations during December–January–February (DJF) compared to June–July–August (JJA), due to increased emissions from household activities and reduced removal processes during colder months. The shielded and ROI-T approaches, which account for OA coatings, result in 2–6 times higher BaP concentrations in DJF compared to NOA. The shielded simulation predicts the highest PWGA fresh BaP concentration (1.3 ng m−3), with 90 % of BaP protected from oxidation. In contrast, the ROI-T approach forecasts lower concentrations in middle to low latitudes, as it assumes less effective OA coatings under warmer, more humid conditions. Evaluations against observed BaP concentrations show the shielded approach performs best, with a normalized mean bias (NMB) within ± 20 %. The combined incremental lifetime cancer risk (ILCR) for both fresh and oxidized PAHs is similar across simulations, emphasizing the importance of considering both forms in health risk assessments. This study highlights the critical role of accurate degradation approaches in PAH modeling.