资源环境科技发展态势分析平台

  • 首页
  • 数据浏览
  • 知识图谱
  • 态势分析
  • 报告产品
登录  |  注册
  1. 首页
  2. 期刊论文
  3. 详情

A comprehensive geotechnical and geophysical assessment of the foundation sublayers in egypt’s new administrative capital

2025-12-05
查看原文
Mahmoud A. Abed, Adel A. A. Othman, Salah Shebl, Mahmoud Zayed, Mohamed H. Farag

Abstract

This study presents a comprehensive geotechnical and geophysical characterization of foundation sublayers in Egypt’s New Administrative Capital, using thirteen Electrical resistivity Tomography (ERT) profiles with seismic velocity data from seventeen Shallow seismic refraction sites and three strategically selected Multichannel Analysis of Surface Waves (MASW) locations. The MASW sites were selected based on geoelectric profiles that reflect the complete types of lithologic variability across the study area, ensuring representative shear wave velocity (Vs) measurements. Resistivity results delineating four major subsurface units: a variable unit of sand, clay, and rock fragments; a limestone unit, a clay unit, and a sandstone unit. Seismic data enabled the calculation of key geotechnical parameters such as: rigidity modulus, Poisson’s ratio, Young’s modulus, and bulk modulus, revealing zones of high competence in the northeastern and northwestern parts, and incompetent materials in the central and southwestern parts of the study area and fairy to moderately competence between them. Material competence was assessed using the concentration index, material index, and stress ratio, which collectively divided the area into zones of slightly, moderately, and highly competent materials. Bearing capacity analysis showed ultimate and allowable bearing capacity values high in the eastern and southern zones, while central regions exhibited reduced capacities. These results provide a good assessment for site-specific foundation design and highlight the value of using geoelectric and seismic methods in complex urban planning.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Othman, A. A. Evaluation of subsurface conditions using geophysical methods. J. Appl. Geophys. 57 (2), 123–135 (2005).

    Google Scholar 

  2. Othman, A. A. A., El-Hafez, A., Youssef, T. H., Sabra, M. E. M. & M. A. S., & Shallow geophysical techniques for groundwater aquifer exploration, Ain Alsokhna area, West Gulf of Suez, Egypt. EGS J. 14 (1), 131–141. https://doi.org/10.21608/jegs.2016.385664 (2016).

    Google Scholar 

  3. Soliman, S. A., El-Khafif, A., Shebl, S., Shazley, T. F. & Farag, M. H. Utilizing shallow seismic refraction, electric resistivity tomography, and ground penetrating radar techniques to evaluate geotechnical properties at El Galala Plateau, Gulf of Suez, Egypt. NRIAG J. Astron. Geophys. 9 (1), 187–197. https://doi.org/10.33899/earth.2023.139838.1076 (2020).

    Google Scholar 

  4. Gemail, K. S. et al. Geotechnical assessment of fractured limestone bedrock using DC resistivity method: A case study at new minia City, Egypt. NRIAG J. Astron. Geophys. 9 (1), 272–279. https://doi.org/10.1080/20909977.2020.1734999 (2020).

    Google Scholar 

  5. Soliman, S. A. Preliminary assessment of the soil foundation characteristics utilizing the 2D resistivity imaging and down-hole seismic refraction techniques: A case study in tenth of ramadan City, Egypt. Iraqi J. Sci. 62 (10), 2751–2764. https://doi.org/10.24996/ijs.2021.62.10.17 (2021).

    Google Scholar 

  6. Zayed, M. & Nasr, A. Detection of fractured limestone landslides using electrical resistivity tomography: A case study in the Mokattam Plateau, Egypt. Iraqi Geol. J. 143–152. https://doi.org/10.46717/igj.56.2C.11ms-2023-9-17 (2023).

  7. Saad, A. M., Sakr, M. A., Selim, M. S. A., Taalab, S. A., Zakaly, H. M., Aboueldahab,S. M., … Awad, H. A. (2024). Geotechnical and geophysical investigations for infrastructure safety zones: a case study of the supporting ring road, Cairo, Egypt. Scientific Reports, 14(1), 29670. https://www.nature.com/articles/s41598-024-72337-8.

  8. Loke, M. H., Rucker, D. F., Chambers, J. E., Wilkinson, P. B. & Kuras, O. Electrical resistivity surveys and data interpretation. In Encyclopedia of Solid Earth Geophysics 344–350 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-58631-7_46.

    Google Scholar 

  9. Shebl, S. et al. Utilizing shallow seismic refraction in defining the geotechnical properties of the foundation materials: A case study at new minia City, nile Valley. Egypt. J. Petroleum. 28, 145–154. https://doi.org/10.1016/j.ejpe.2018.12.006 (2019).

    Google Scholar 

  10. Park, C. B., Miller, R. D. & Xia, J. Multichannel analysis of surface waves. Geophysics 64 (3), 800–808. https://doi.org/10.1190/1.1444590 (1999).

    Google Scholar 

  11. Ren, Y., Liu, B., Liu, B., Liu, Z. & Jiang, P. Joint inversion of seismic and resistivity data powered by Deep-learning. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2024.3458402 (2024).

    Google Scholar 

  12. Zbigniew Wilczynski, A. et al. Ambient noise surface-wave imaging in a hardrock environment: implications for mineral exploration, Geophysical Journal International, Volume 240, Issue 1, January 2025, Pages 571–590, (2025). https://doi.org/10.1093/gji/ggae392

  13. Liu, L., Tian, Y., Liu, Y., Chen, J. & Li, H. Multichannel analysis of ambient noise surface waves based on semblance Phase-Shift method. Remote Sens. 16 (23), 4484. https://doi.org/10.3390/rs16234484 (2024).

    Google Scholar 

  14. Zheng, K., Liu, Q. & Wang, Y. Comparative study of MASW and refraction methods in urban geotechnical surveys. Geotech. Geol. Eng. 40 (5), 2345–2360 (2022).

    Google Scholar 

  15. Xu, D., Zhang, Z., Qin, Y., Liu, T. & Cheng, Z. Effect of particle size distribution on dynamic properties of cemented coral sand under SHPB impact loading. Soil Dyn. Earthq. Eng. 162, 107438. https://doi.org/10.1016/j.soildyn.2022.107438 (2022).

    Google Scholar 

  16. Çakır, Ö. One-station, double-station and array analysis of Rayleigh surface waves applied to a common-shot gather: a programmed technique described through synthetic seismograms in near-surface. Konya J. Eng. Sci. 13 (1), 110–131. https://doi.org/10.36306/konjes.1554353 (2025).

    Google Scholar 

  17. Hagag, W. Structural evolution and cenozoic tectonostratigraphy of the Cairo-Suez district, North Eastern desert of egypt: field-structural data from Gebel Qattamiya-Gebel Um reheiat area. J. Afr. Earth Sc. 118, 174–191. https://doi.org/10.1016/j.jafrearsci.2016.02.021 (2016).

    Google Scholar 

  18. Attwa, M. & Henaish, A. Regional structural mapping using a combined geological and geophysical approach–A preliminary study at Cairo-Suez district, Egypt. J. Afr. Earth Sc. 144, 104–121. https://doi.org/10.1016/j.jafrearsci.2018.04.010 (2018).

    Google Scholar 

  19. Henaish, A., Kharbish, S., Abdelhady, M. & Khedr, F. Fault interactions and role of preexisting structures on the geometry of conjugate transfer zones: structural insights from Cairo-Suez District, Egypt. Mar. Pet. Geol. 177, 107402. https://doi.org/10.1016/j.marpetgeo.2025.107402 (2025).

    Google Scholar 

  20. Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A. Phanerozoic geological evolution of Northern and central africa: an overview. J. Afr. Earth Sc. 43 (1–3), 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017 (2005).

    Google Scholar 

  21. Henaish, A., Attwa, M. & Zamzam, S. Integrated structural, geophysical and remote sensing data for characterizing extensional linked fault systems and related land deformation hazards at Cairo-Suez District, Egypt. Eng. Geol., 314, 106999. https://doi.org/10.1016/j.enggeo.2023.106999 (2023).

  22. Moustafa, A. R. & Khalil, M. H. Rejuvenation of the Eastern mediterranean passive continental margin in Northern and central sinai: new data from the themed fault. Geol. Mag. 131, 435–448. https://doi.org/10.1017/s0016756800012085 (1994).

    Google Scholar 

  23. Moustafa, A. R. & Abd-Allah, A. Structural setting of the central part of the Cairo-Suez district. Middle East Research Center, Ain Shams University, Earth Science Series. link: (1991). https://www.researchgate.net/publication/278967159

  24. Salem, A. The anthropogenic geomorphology of the new suburbs, East of greater Cairo, Egypt. Bull. De la. Société De Géographie d’Egypte. 91 (1), 1–28. https://doi.org/10.21608/bsge.2018.90304 (2018).

    Google Scholar 

  25. Moustafa, A. R. & Abd-Allah, M. A. Transfer zones with En echelon faulting at the Northern End of the Suez rift. Tectonics 11, 499–509. https://doi.org/10.1029/91TC03184 (1992).

    Google Scholar 

  26. Salama, A. Active tectonics and Paleotsunami Records of the Northern coast of Egypt (Doctoral dissertation, Université de Strasbourg). Earth Sciences. Université de Strasbourg, 2017. English. NNT: 2017STRAH012ff. fftel-01806344 f. HAL Id: tel-01806344 (2017). https://theses.hal.science/tel-01806344v1

  27. Khalil, M. H. & Hanafy, S. M. Seismic refraction and MASW techniques for site characterization. J. Environ. Eng. Geophys. 13 (2), 87–98. https://doi.org/10.1016/j.jappgeo.2008.06.003 (2008).

    Google Scholar 

  28. Karray, M. & Lefebvre, G. Significance and evaluation of Poisson’s ratio in Rayleigh wave testing. Canadian Geotechnical Journal, 45 (5). 624–635 https://doi.org10.1139/t08-016 (2008).

  29. Abudeif, A. M., Aal, A., Abdelbaky, G. Z., Gowad, N. F. A., Mohammed, M. A. & A. M., & Evaluation of engineering site and subsurface structures using seismic refraction tomography: a case study of abydos site, Sohag governorate, Egypt. Appl. Sci. 13 (4), 2745. https://doi.org/10.3390/app13042745 (2023).

    Google Scholar 

  30. L’Heureux, J. S. & Long, M. Reliability of MASW-derived vs profiles. Geotech. Test. J. 40 (5), 1–12. https://doi.org/10.1520/GTJ20160184 (2017).

    Google Scholar 

  31. Buckley, S. F., Arvanitis, M. & Wahba, M. Elastic moduli Estimation from MASW and borehole data. Geotech. Geol. Eng. 43 (1), 89–104 (2025).

    Google Scholar 

  32. Wahba, D. et al. Optimizing site selection for construction: integrating GIS modeling, geophysical, geotechnical, and Geomorphological data using the analytic hierarchy process. ISPRS Int. J. Geo-Information. 14 (1), 3. https://doi.org/10.3390/ijgi14010003 (2024).

    Google Scholar 

  33. Arvanitis, M. & Estimation of Geotechnical Parameters Using Seismic Measurements. January. International Journal of Research in Engineering, Science and Management Volume 7, Issue 1, link; (2024). https://www.casacollege.ac.cy/wp-content/uploads/2024/02/Estimation-of-Geotechnical-Parameters-Using-Seismic-Measurements-1.pdf

  34. Das, B. M. Principles of Geotechnical Engineering (7th ed.). CL Engineering, Cengage Learning. ISBN: 9780495411307. (2009).

  35. Gercek, H. Poisson’s ratio values for rocks. Int. J. Rock Mech. Min. Sci. 44 (1), 1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011 (2007).

    Google Scholar 

  36. Lowrie, W. & Fichtner, A. Fundamentals of geophysics. Cambridge university press. (2020). https://doi.org/10.1017/9781108685917

  37. Said, M. J. M., Zainorabidin, A. & Madun, A. Data acquisition challenges on peat soil using seismic refraction. In InCIEC 2014 (eds Hassan, R. et al.) (Springer, 2015). https://doi.org/10.1007/978-981-287-290-6_42 10.1007/978-981-287-290-6_42.

    Google Scholar 

  38. Hassan, M. (ed). Avantgarde Reliability Implications in Civil Engineering. IntechOpen. (2023). https://doi.org/10.5772/intechopen.102292

  39. Essien, I., Akankpo, U. E., Igboekwe, A. O., Umoren, E. B. & M. U., & Determination of incompressibility (bulk modulus), elasticity (Young’s modulus) and rigidity (shear modulus) of Uyo and its environ, southeastern Nigeria. J. Geoscience Environ. Prot. 11 (1), 127–138. https://doi.org/10.4236/gep.2023.111008 (2023).

    Google Scholar 

  40. Lowrie, W. Fundamentals of Geophysics 2nd edn. (Cambridge University Press, 2011).

  41. El Sayed, A. M. A., Mohammed, A. O. & El Sayed, N. A. Study of dynamic mechanical properties for urban purposes: Alamein area in Western desert (Egypt). ARPHA Proc. 7, 10–17. https://doi.org/10.3897/ap.7.e0010 (2024).

    Google Scholar 

  42. Momoh, K. O., Muhammad, U. I., Usman, A. & Ibrahim, A. U. Estimation of near-surface geotechnical parameters using seismic measurements at phase ǀǀ site, Ahmadu Bello university Zaria, North-western Nigeria. Global J. Earth Environ. Sci. 5 (1), 1–10. https://doi.org/10.31248/gjees2019.052 (2020).

    Google Scholar 

  43. Abd El-Rahman, M. & Egypt The potential of absorption coefficient and seismic quality factor in delineating less sound foundation materials in Jabal Shib Az Sahara area, Northwest of Sanaa, Yemen Arab Republic. MERC Earth Sci., 5, 181–187. (1991).

    Google Scholar 

  44. Qaher, M., Eldosouky, A. M., Saada, S. A. & Basheer, A. A. Assessing Geotechnical Property for Construction Purposes: A Study on the Efficacy of Shallow Seismic Refraction Tomography Method. Front. Sci. Res. Technol. 7(1), https://doi.org/10.21608/fsrt.2023.229137.1102 (2023).

  45. Nguyen, P. T., Dang, T. X., Nguyen, T. A., Vo, L. N. & Van Vu Tran, H. Ultimate Bearing Capacity of Clay Soils Determined Using Finite Element Analysis and Derivative-based Cubic Regression. Transp. Infrastructure Geotechnology, 12(1), 1–15. https://doi.org/10.1007/s40515-024-00467-7 (2025).

  46. Khatti, J. et al. Prediction of ultimate bearing capacity of shallow foundations on cohesionless soil using hybrid LSTM and RVM approaches: an extended investigation of multicollinearity. Comput. Geotech. 165, 105912. https://doi.org/10.1016/j.compgeo.2023.105912 (2024).

    Google Scholar 

  47. Cheng, X. & Vanapalli, S. K. Prediction of the end-bearing capacity of axially loaded piles in saturated and unsaturated soils based on the stress characteristics method. Int. J. Geomech. 23, 04023104. https://doi.org/10.1061/ijgnai.gmeng-7965 (2023).

    Google Scholar 

  48. Sethy, B. P. et al. Prediction of ultimate bearing capacity of circular foundation on sand layer of limited thickness using artificial neural network. Int. J. Geotech. Eng. 15, 1252–1267. https://doi.org/10.1080/19386362.2019.1645437 (2021).

    Google Scholar 

  49. Tezcan, S. S. & Ozdemir, Z. A refined formula for the allowable soil pressure using shear wave velocities. J. Civil Eng. Archit. 6 (4), 470–478. https://doi.org/10.5897/JCECT11.066 (2012).

    Google Scholar 

  50. Abd El-Rahman, M., Setto, I. & El-Werr, A. : Inferring mechanical properties of the foundation materials at the 2nd Industrial zone city, from geophysical measurements E.G.S. Proc. of the 10th Ann. Meet, pp. 50–61. (1992).

  51. Oladotun, A. O., Oluwagbemi, J. E., Lola, A. M., Maxwell, O. & Sayo, A. Predicting dynamic geotechnical parameters in near-surface coastal environment. Cogent Eng. 6 (1), 1588081. https://doi.org/10.1080/23311916.2019.1588081 (2019).

    Google Scholar 

  52. Sheriff, R. E. & Geldart, L. P. Exploration seismology (Cambridge University Press, 1995).

Download references

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

  1. Geology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt

    Mahmoud A. Abed, Adel A. A. Othman & Mahmoud Zayed

  2. Geophysics Laboratory, Exploration Department, Egyptian Petroleum Research Institute, Cairo, Egypt

    Salah Shebl & Mohamed H. Farag

  3. EPRI Core Analysis Center, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt

    Mohamed H. Farag

Authors
  1. Mahmoud A. Abed
    View author publications

    Search author on:PubMed Google Scholar

  2. Adel A. A. Othman
    View author publications

    Search author on:PubMed Google Scholar

  3. Salah Shebl
    View author publications

    Search author on:PubMed Google Scholar

  4. Mahmoud Zayed
    View author publications

    Search author on:PubMed Google Scholar

  5. Mohamed H. Farag
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Mahmoud A Abed: Writing – review & editing **,** Writing–original draft, Visualization, Validation, Supervision, Software, Resources, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.Adel A. A. Othman: Visualization, Validation, Supervision, Software, Resources participated in writing – review & editing.Salah Shebl: Visualization, Validation, Supervision, Software, Resources and participated in writing – review & editing.Mahmoud Zayed: Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Supervision, Conceptualization and participated in writing – review & editing.Mohamed H. Farag: Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Supervision, Conceptualization and participated in writing – review & editing.

Corresponding authors

Correspondence to Mahmoud A. Abed or Mohamed H. Farag.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, M.A., Othman, A.A.A., Shebl, S. et al. A comprehensive geotechnical and geophysical assessment of the foundation sublayers in egypt’s new administrative capital. Sci Rep (2025). https://doi.org/10.1038/s41598-025-29246-1

Download citation

  • Received: 05 October 2025

  • Accepted: 14 November 2025

  • Published: 05 December 2025

  • DOI: https://doi.org/10.1038/s41598-025-29246-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Geotechnical
  • Geophysical
  • ERT
  • Shallow seismic refraction
  • New administrative capital

Subjects

  • Engineering
  • Solid Earth sciences

关于我们

面向碳中和与碳达峰研究领域,汇聚国内外相关研究进展,提供全球双碳领域开放数据和知识资源的智能感知、自动汇聚、关联融合与集成服务,面向科学决策和行业部门提供情报咨询服务。

联系我们

甘肃省兰州市天水中路
0931-8274859
gstded@llas.ac.cn

Copyright © 2022 中国科学院西北生态环境资源研究院文献情报中心 - Powered by SciEye