This study presents a comprehensive geotechnical and geophysical characterization of foundation sublayers in Egypt’s New Administrative Capital, using thirteen Electrical resistivity Tomography (ERT) profiles with seismic velocity data from seventeen Shallow seismic refraction sites and three strategically selected Multichannel Analysis of Surface Waves (MASW) locations. The MASW sites were selected based on geoelectric profiles that reflect the complete types of lithologic variability across the study area, ensuring representative shear wave velocity (Vs) measurements. Resistivity results delineating four major subsurface units: a variable unit of sand, clay, and rock fragments; a limestone unit, a clay unit, and a sandstone unit. Seismic data enabled the calculation of key geotechnical parameters such as: rigidity modulus, Poisson’s ratio, Young’s modulus, and bulk modulus, revealing zones of high competence in the northeastern and northwestern parts, and incompetent materials in the central and southwestern parts of the study area and fairy to moderately competence between them. Material competence was assessed using the concentration index, material index, and stress ratio, which collectively divided the area into zones of slightly, moderately, and highly competent materials. Bearing capacity analysis showed ultimate and allowable bearing capacity values high in the eastern and southern zones, while central regions exhibited reduced capacities. These results provide a good assessment for site-specific foundation design and highlight the value of using geoelectric and seismic methods in complex urban planning.
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Othman, A. A. Evaluation of subsurface conditions using geophysical methods. J. Appl. Geophys. 57 (2), 123–135 (2005).
Othman, A. A. A., El-Hafez, A., Youssef, T. H., Sabra, M. E. M. & M. A. S., & Shallow geophysical techniques for groundwater aquifer exploration, Ain Alsokhna area, West Gulf of Suez, Egypt. EGS J. 14 (1), 131–141. https://doi.org/10.21608/jegs.2016.385664 (2016).
Soliman, S. A., El-Khafif, A., Shebl, S., Shazley, T. F. & Farag, M. H. Utilizing shallow seismic refraction, electric resistivity tomography, and ground penetrating radar techniques to evaluate geotechnical properties at El Galala Plateau, Gulf of Suez, Egypt. NRIAG J. Astron. Geophys. 9 (1), 187–197. https://doi.org/10.33899/earth.2023.139838.1076 (2020).
Gemail, K. S. et al. Geotechnical assessment of fractured limestone bedrock using DC resistivity method: A case study at new minia City, Egypt. NRIAG J. Astron. Geophys. 9 (1), 272–279. https://doi.org/10.1080/20909977.2020.1734999 (2020).
Soliman, S. A. Preliminary assessment of the soil foundation characteristics utilizing the 2D resistivity imaging and down-hole seismic refraction techniques: A case study in tenth of ramadan City, Egypt. Iraqi J. Sci. 62 (10), 2751–2764. https://doi.org/10.24996/ijs.2021.62.10.17 (2021).
Zayed, M. & Nasr, A. Detection of fractured limestone landslides using electrical resistivity tomography: A case study in the Mokattam Plateau, Egypt. Iraqi Geol. J. 143–152. https://doi.org/10.46717/igj.56.2C.11ms-2023-9-17 (2023).
Saad, A. M., Sakr, M. A., Selim, M. S. A., Taalab, S. A., Zakaly, H. M., Aboueldahab,S. M., … Awad, H. A. (2024). Geotechnical and geophysical investigations for infrastructure safety zones: a case study of the supporting ring road, Cairo, Egypt. Scientific Reports, 14(1), 29670. https://www.nature.com/articles/s41598-024-72337-8.
Loke, M. H., Rucker, D. F., Chambers, J. E., Wilkinson, P. B. & Kuras, O. Electrical resistivity surveys and data interpretation. In Encyclopedia of Solid Earth Geophysics 344–350 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-58631-7_46.
Shebl, S. et al. Utilizing shallow seismic refraction in defining the geotechnical properties of the foundation materials: A case study at new minia City, nile Valley. Egypt. J. Petroleum. 28, 145–154. https://doi.org/10.1016/j.ejpe.2018.12.006 (2019).
Park, C. B., Miller, R. D. & Xia, J. Multichannel analysis of surface waves. Geophysics 64 (3), 800–808. https://doi.org/10.1190/1.1444590 (1999).
Ren, Y., Liu, B., Liu, B., Liu, Z. & Jiang, P. Joint inversion of seismic and resistivity data powered by Deep-learning. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2024.3458402 (2024).
Zbigniew Wilczynski, A. et al. Ambient noise surface-wave imaging in a hardrock environment: implications for mineral exploration, Geophysical Journal International, Volume 240, Issue 1, January 2025, Pages 571–590, (2025). https://doi.org/10.1093/gji/ggae392
Liu, L., Tian, Y., Liu, Y., Chen, J. & Li, H. Multichannel analysis of ambient noise surface waves based on semblance Phase-Shift method. Remote Sens. 16 (23), 4484. https://doi.org/10.3390/rs16234484 (2024).
Zheng, K., Liu, Q. & Wang, Y. Comparative study of MASW and refraction methods in urban geotechnical surveys. Geotech. Geol. Eng. 40 (5), 2345–2360 (2022).
Xu, D., Zhang, Z., Qin, Y., Liu, T. & Cheng, Z. Effect of particle size distribution on dynamic properties of cemented coral sand under SHPB impact loading. Soil Dyn. Earthq. Eng. 162, 107438. https://doi.org/10.1016/j.soildyn.2022.107438 (2022).
Çakır, Ö. One-station, double-station and array analysis of Rayleigh surface waves applied to a common-shot gather: a programmed technique described through synthetic seismograms in near-surface. Konya J. Eng. Sci. 13 (1), 110–131. https://doi.org/10.36306/konjes.1554353 (2025).
Hagag, W. Structural evolution and cenozoic tectonostratigraphy of the Cairo-Suez district, North Eastern desert of egypt: field-structural data from Gebel Qattamiya-Gebel Um reheiat area. J. Afr. Earth Sc. 118, 174–191. https://doi.org/10.1016/j.jafrearsci.2016.02.021 (2016).
Attwa, M. & Henaish, A. Regional structural mapping using a combined geological and geophysical approach–A preliminary study at Cairo-Suez district, Egypt. J. Afr. Earth Sc. 144, 104–121. https://doi.org/10.1016/j.jafrearsci.2018.04.010 (2018).
Henaish, A., Kharbish, S., Abdelhady, M. & Khedr, F. Fault interactions and role of preexisting structures on the geometry of conjugate transfer zones: structural insights from Cairo-Suez District, Egypt. Mar. Pet. Geol. 177, 107402. https://doi.org/10.1016/j.marpetgeo.2025.107402 (2025).
Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A. Phanerozoic geological evolution of Northern and central africa: an overview. J. Afr. Earth Sc. 43 (1–3), 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017 (2005).
Henaish, A., Attwa, M. & Zamzam, S. Integrated structural, geophysical and remote sensing data for characterizing extensional linked fault systems and related land deformation hazards at Cairo-Suez District, Egypt. Eng. Geol., 314, 106999. https://doi.org/10.1016/j.enggeo.2023.106999 (2023).
Moustafa, A. R. & Khalil, M. H. Rejuvenation of the Eastern mediterranean passive continental margin in Northern and central sinai: new data from the themed fault. Geol. Mag. 131, 435–448. https://doi.org/10.1017/s0016756800012085 (1994).
Moustafa, A. R. & Abd-Allah, A. Structural setting of the central part of the Cairo-Suez district. Middle East Research Center, Ain Shams University, Earth Science Series. link: (1991). https://www.researchgate.net/publication/278967159
Salem, A. The anthropogenic geomorphology of the new suburbs, East of greater Cairo, Egypt. Bull. De la. Société De Géographie d’Egypte. 91 (1), 1–28. https://doi.org/10.21608/bsge.2018.90304 (2018).
Moustafa, A. R. & Abd-Allah, M. A. Transfer zones with En echelon faulting at the Northern End of the Suez rift. Tectonics 11, 499–509. https://doi.org/10.1029/91TC03184 (1992).
Salama, A. Active tectonics and Paleotsunami Records of the Northern coast of Egypt (Doctoral dissertation, Université de Strasbourg). Earth Sciences. Université de Strasbourg, 2017. English. NNT: 2017STRAH012ff. fftel-01806344 f. HAL Id: tel-01806344 (2017). https://theses.hal.science/tel-01806344v1
Khalil, M. H. & Hanafy, S. M. Seismic refraction and MASW techniques for site characterization. J. Environ. Eng. Geophys. 13 (2), 87–98. https://doi.org/10.1016/j.jappgeo.2008.06.003 (2008).
Karray, M. & Lefebvre, G. Significance and evaluation of Poisson’s ratio in Rayleigh wave testing. Canadian Geotechnical Journal, 45 (5). 624–635 https://doi.org10.1139/t08-016 (2008).
Abudeif, A. M., Aal, A., Abdelbaky, G. Z., Gowad, N. F. A., Mohammed, M. A. & A. M., & Evaluation of engineering site and subsurface structures using seismic refraction tomography: a case study of abydos site, Sohag governorate, Egypt. Appl. Sci. 13 (4), 2745. https://doi.org/10.3390/app13042745 (2023).
L’Heureux, J. S. & Long, M. Reliability of MASW-derived vs profiles. Geotech. Test. J. 40 (5), 1–12. https://doi.org/10.1520/GTJ20160184 (2017).
Buckley, S. F., Arvanitis, M. & Wahba, M. Elastic moduli Estimation from MASW and borehole data. Geotech. Geol. Eng. 43 (1), 89–104 (2025).
Wahba, D. et al. Optimizing site selection for construction: integrating GIS modeling, geophysical, geotechnical, and Geomorphological data using the analytic hierarchy process. ISPRS Int. J. Geo-Information. 14 (1), 3. https://doi.org/10.3390/ijgi14010003 (2024).
Arvanitis, M. & Estimation of Geotechnical Parameters Using Seismic Measurements. January. International Journal of Research in Engineering, Science and Management Volume 7, Issue 1, link; (2024). https://www.casacollege.ac.cy/wp-content/uploads/2024/02/Estimation-of-Geotechnical-Parameters-Using-Seismic-Measurements-1.pdf
Das, B. M. Principles of Geotechnical Engineering (7th ed.). CL Engineering, Cengage Learning. ISBN: 9780495411307. (2009).
Gercek, H. Poisson’s ratio values for rocks. Int. J. Rock Mech. Min. Sci. 44 (1), 1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011 (2007).
Lowrie, W. & Fichtner, A. Fundamentals of geophysics. Cambridge university press. (2020). https://doi.org/10.1017/9781108685917
Said, M. J. M., Zainorabidin, A. & Madun, A. Data acquisition challenges on peat soil using seismic refraction. In InCIEC 2014 (eds Hassan, R. et al.) (Springer, 2015). https://doi.org/10.1007/978-981-287-290-6_42 10.1007/978-981-287-290-6_42.
Hassan, M. (ed). Avantgarde Reliability Implications in Civil Engineering. IntechOpen. (2023). https://doi.org/10.5772/intechopen.102292
Essien, I., Akankpo, U. E., Igboekwe, A. O., Umoren, E. B. & M. U., & Determination of incompressibility (bulk modulus), elasticity (Young’s modulus) and rigidity (shear modulus) of Uyo and its environ, southeastern Nigeria. J. Geoscience Environ. Prot. 11 (1), 127–138. https://doi.org/10.4236/gep.2023.111008 (2023).
Lowrie, W. Fundamentals of Geophysics 2nd edn. (Cambridge University Press, 2011).
El Sayed, A. M. A., Mohammed, A. O. & El Sayed, N. A. Study of dynamic mechanical properties for urban purposes: Alamein area in Western desert (Egypt). ARPHA Proc. 7, 10–17. https://doi.org/10.3897/ap.7.e0010 (2024).
Momoh, K. O., Muhammad, U. I., Usman, A. & Ibrahim, A. U. Estimation of near-surface geotechnical parameters using seismic measurements at phase ǀǀ site, Ahmadu Bello university Zaria, North-western Nigeria. Global J. Earth Environ. Sci. 5 (1), 1–10. https://doi.org/10.31248/gjees2019.052 (2020).
Abd El-Rahman, M. & Egypt The potential of absorption coefficient and seismic quality factor in delineating less sound foundation materials in Jabal Shib Az Sahara area, Northwest of Sanaa, Yemen Arab Republic. MERC Earth Sci., 5, 181–187. (1991).
Qaher, M., Eldosouky, A. M., Saada, S. A. & Basheer, A. A. Assessing Geotechnical Property for Construction Purposes: A Study on the Efficacy of Shallow Seismic Refraction Tomography Method. Front. Sci. Res. Technol. 7(1), https://doi.org/10.21608/fsrt.2023.229137.1102 (2023).
Nguyen, P. T., Dang, T. X., Nguyen, T. A., Vo, L. N. & Van Vu Tran, H. Ultimate Bearing Capacity of Clay Soils Determined Using Finite Element Analysis and Derivative-based Cubic Regression. Transp. Infrastructure Geotechnology, 12(1), 1–15. https://doi.org/10.1007/s40515-024-00467-7 (2025).
Khatti, J. et al. Prediction of ultimate bearing capacity of shallow foundations on cohesionless soil using hybrid LSTM and RVM approaches: an extended investigation of multicollinearity. Comput. Geotech. 165, 105912. https://doi.org/10.1016/j.compgeo.2023.105912 (2024).
Cheng, X. & Vanapalli, S. K. Prediction of the end-bearing capacity of axially loaded piles in saturated and unsaturated soils based on the stress characteristics method. Int. J. Geomech. 23, 04023104. https://doi.org/10.1061/ijgnai.gmeng-7965 (2023).
Sethy, B. P. et al. Prediction of ultimate bearing capacity of circular foundation on sand layer of limited thickness using artificial neural network. Int. J. Geotech. Eng. 15, 1252–1267. https://doi.org/10.1080/19386362.2019.1645437 (2021).
Tezcan, S. S. & Ozdemir, Z. A refined formula for the allowable soil pressure using shear wave velocities. J. Civil Eng. Archit. 6 (4), 470–478. https://doi.org/10.5897/JCECT11.066 (2012).
Abd El-Rahman, M., Setto, I. & El-Werr, A. : Inferring mechanical properties of the foundation materials at the 2nd Industrial zone city, from geophysical measurements E.G.S. Proc. of the 10th Ann. Meet, pp. 50–61. (1992).
Oladotun, A. O., Oluwagbemi, J. E., Lola, A. M., Maxwell, O. & Sayo, A. Predicting dynamic geotechnical parameters in near-surface coastal environment. Cogent Eng. 6 (1), 1588081. https://doi.org/10.1080/23311916.2019.1588081 (2019).
Sheriff, R. E. & Geldart, L. P. Exploration seismology (Cambridge University Press, 1995).
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Mahmoud A Abed: Writing – review & editing **,** Writing–original draft, Visualization, Validation, Supervision, Software, Resources, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.Adel A. A. Othman: Visualization, Validation, Supervision, Software, Resources participated in writing – review & editing.Salah Shebl: Visualization, Validation, Supervision, Software, Resources and participated in writing – review & editing.Mahmoud Zayed: Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Supervision, Conceptualization and participated in writing – review & editing.Mohamed H. Farag: Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Supervision, Conceptualization and participated in writing – review & editing.
The authors declare no competing interests.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Abed, M.A., Othman, A.A.A., Shebl, S. et al. A comprehensive geotechnical and geophysical assessment of the foundation sublayers in egypt’s new administrative capital. Sci Rep (2025). https://doi.org/10.1038/s41598-025-29246-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-29246-1