资源环境科技发展态势分析平台

  • 首页
  • 数据浏览
  • 知识图谱
  • 态势分析
  • 报告产品
登录  |  注册
  1. 首页
  2. 期刊论文
  3. 详情

Adoption behavior and physiological stress responses following offspring loss in Pardosa lugubris spider

2025-12-05
查看原文
Marta Sawadro, Agnieszka Czerwonka, Bartosz Łozowski, Mateusz Glenszczyk, Weronika Porc, Karolina Cichocka-Śliwka, Agnieszka Babczyńska

Abstract

Parental care increases offspring survival and thus contributes to the reproductive success of a species. However, offspring loss may induce behavioral and physiological stress responses in parents. By examining stress markers—heat shock proteins and reactive oxygen species—alongside behavioral observations, we analyzed the stress responses in Pardosa lugubris females following the removal of their egg sacs or juveniles. Stress markers were measured in both females and juveniles. Behavioral trials were conducted to assess maternal responses to egg sac loss: unfertilized females, females adopting foreign egg sacs, and females given a choice between their own and a foreign sac. The results indicate that fertilized females tend to adopt egg sacs after offspring loss, even when the sac is not their own. Offspring removal induced measurable stress responses in both mothers and juveniles, which decreased over time. These findings highlight how offspring loss affects maternal behavior and stress physiology in Pardosa lugubris, offering insight into the mechanisms underlying parental investment and resilience in invertebrates.

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Alonso-Alvarez, C. & Velando, A. Benefits and costs of parental care. In The Evolution of Parental Care, 40–45 (Oxford Univ. Press, 2012).

  2. Bleu, J. et al. Reproductive allocation strategies: A long-term study on proximate factors and temporal adjustments in a viviparous lizard. Oecologia 171, 141–151 (2013).

    Google Scholar 

  3. Stearns, S. C. The Evolution of Life Histories (Oxford Univ, 1992).

    Google Scholar 

  4. Costa, J. T. The other insect societies: Overview and new directions. Curr. Opin. Insect. Sci. 28, 40–49 (2018).

    Google Scholar 

  5. Glenszczyk, M. et al. The apple of discord: Can spider cocoons be equipped with antimicrobial factors? - a systematic review. Front. Zool. 22, 9 (2025).

    Google Scholar 

  6. Austin, A. D. The function of spider egg sacs in relation to parasitoids and predators, with special reference to the Australian fauna. J. Nat. Hist. 19, 359–376 (1985).

    Google Scholar 

  7. Foelix, R. F. Biology of Spiders 3rd edn. (Oxford University Press, 2011).

    Google Scholar 

  8. Ewunkem, A. J. & Agee, K. Spider parental care and awe-inspiring egg sac (cocoon). Int. J. Zool. 2022, 6763306 (2022).

    Google Scholar 

  9. Colancecco, M., Rypstra, A. L. & Persons, M. H. Predation and foraging costs of carrying egg sacs of different mass in the wolf spider Pardosa milvina. Behaviour 144, 1003–1018 (2007).

    Google Scholar 

  10. Culley, T., Wiley, J. E. & Persons, M. H. Proximate cues governing egg sac discrimination and recognition in the wolf spider Pardosa milvina (Araneae: Lycosidae). J. Arachnol. 38, 387–390 (2010).

    Google Scholar 

  11. Ruhland, F., Chiara, V. & Trabalon, M. Age and egg-sac loss determine maternal behaviour and locomotor activity of wolf spiders (Araneae, Lycosidae). Behav. Process. 132, 57–65 (2016).

    Google Scholar 

  12. Eason, R. R. Life history and behavior of Pardosa lapidicina Emerton (Araneae: Lycosidae). J. Kans. Entomol. Soc. 42, 339–360 (1969).

    Google Scholar 

  13. Preston-Mafham, K. & Preston-Mafham, R. The Natural History of Spiders. (Crowood Press, 1996).

  14. Ruhland, F., Pétillon, J. & Trabalon, M. Physiological costs during the first maternal care in the wolf spider Pardosa saltans (Araneae, Lycosidae). J. Insect Physiol. 95, 42–50 (2016).

    Google Scholar 

  15. Trabalon, M. et al. Embryonic and post-embryonic development inside wolf spiders’ egg sac with special emphasis on the vitellus. J. Comp. Physiol. B 188, 211–224 (2017).

    Google Scholar 

  16. Berry, A. D. & Rypstra, A. L. Egg sac recognition and fostering in the wolf spider Pardosa milvina (Araneae: Lycosidae) and its effects on spiderling survival. Behav. Ecol. Sociobiol. 75, 1–9 (2021).

    Google Scholar 

  17. Ewunkem, J. A., Ntonifor, N. N. & Parr, M. C. Bioecology of Heteropoda venatoria (L.) (Araneae: Sparassidae) and its implications in a tropical banana agroecosystem. J. Glob. Agric. Ecol. 5, 164–175 (2016).

    Google Scholar 

  18. Circu, M. L. & Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762 (2010).

    Google Scholar 

  19. Nordberg, J. & Arnér, E. S. J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31, 1287–1312 (2001).

    Google Scholar 

  20. Pandey, B. N. & Mishra, K. P. In-vitro studies on radiation-induced membrane oxidative damage in apoptotic death of mouse thymocytes. Int. J. Low Radiat. 1, 113–119 (2003).

    Google Scholar 

  21. Carpenter, C. M. & Hofmann, G. E. Expression of 70kDa heat shock proteins in Antarctic and New Zealand notothenioid fish. Comp. Biochem. Physiol. A 125, 229–238 (2000).

    Google Scholar 

  22. Tkáčková, M. & Angelovičová, L. Heat-Shock Proteins (HSPs): A review. Sci. Papers: Anim. Sci. Biotechnol. 45, 349 (2012).

    Google Scholar 

  23. Adamo, S. A. The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection. Horm. Behav. 62, 324–330 (2012).

    Google Scholar 

  24. Chaitanya, R. K., Shashank, K. & Sridevi, P. Oxidative stress in invertebrate systems. Free Radicals Dis. 19, 51–68 (2016).

    Google Scholar 

  25. Wilczek, G. Apoptosis and biochemical biomarkers of stress in spiders from industrially polluted areas exposed to high temperature and dimethoate. Comp. Biochem. Physiol. C 141, 194–206 (2005).

    Google Scholar 

  26. Dolejš, P., Kubcová, L. & Buchar, J. Reproduction of Arctosa alpigena lamperti (Araneae: Lycosidae) – where, when, how, and how long?. Invertebr. Reprod. Dev. 56, 72–78 (2012).

    Google Scholar 

  27. Salmon, A. B., Marx, D. B. & Harshman, L. G. A cost of reproduction in Drosophila melanogaster: Stress susceptibility. Evolution 55, 1600–1608 (2001).

    Google Scholar 

  28. Sørensen, J. G., Kristensen, T. N. & Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6, 1025–1037 (2003).

    Google Scholar 

  29. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Google Scholar 

  30. Costantini, D. Oxidative stress and hormesis in evolutionary ecology and physiology. Marriage Between Mech. Evol. Approach. https://doi.org/10.1007/978-3-642-54663-1 (2014).

    Google Scholar 

  31. Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).

    Google Scholar 

Download references

Funding

The authors received no funding for this work.

Author information

Authors and Affiliations

  1. Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland

    Marta Sawadro, Agnieszka Czerwonka, Bartosz Łozowski, Mateusz Glenszczyk, Weronika Porc, Karolina Cichocka-Śliwka & Agnieszka Babczyńska

Authors
  1. Marta Sawadro
    View author publications

    Search author on:PubMed Google Scholar

  2. Agnieszka Czerwonka
    View author publications

    Search author on:PubMed Google Scholar

  3. Bartosz Łozowski
    View author publications

    Search author on:PubMed Google Scholar

  4. Mateusz Glenszczyk
    View author publications

    Search author on:PubMed Google Scholar

  5. Weronika Porc
    View author publications

    Search author on:PubMed Google Scholar

  6. Karolina Cichocka-Śliwka
    View author publications

    Search author on:PubMed Google Scholar

  7. Agnieszka Babczyńska
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.S. conceived and designed the study, prepared the study material, and wrote the main manuscript text. M.S., A.Cz., M.G., W.P., K.C-Ś., and A.B. performed the experiments, analyzed, and interpreted the data. M.S. and B.Ł. conducted the statistical analysis. A.Cz., M.G., and B.Ł. contributed to the review and editing of the manuscript.

Corresponding author

Correspondence to Agnieszka Czerwonka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawadro, M., Czerwonka, A., Łozowski, B. et al. Adoption behavior and physiological stress responses following offspring loss in Pardosa lugubris spider. Sci Rep (2025). https://doi.org/10.1038/s41598-025-30418-2

Download citation

  • Received: 19 August 2025

  • Accepted: 25 November 2025

  • Published: 05 December 2025

  • DOI: https://doi.org/10.1038/s41598-025-30418-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Maternal behavior
  • Parental care
  • Stress markers
  • Spiders
  • Wolf spiders
  • Pardosa lugubris

Subjects

  • Ecology
  • Evolution
  • Physiology
  • Zoology

关于我们

面向碳中和与碳达峰研究领域,汇聚国内外相关研究进展,提供全球双碳领域开放数据和知识资源的智能感知、自动汇聚、关联融合与集成服务,面向科学决策和行业部门提供情报咨询服务。

联系我们

甘肃省兰州市天水中路
0931-8274859
gstded@llas.ac.cn

Copyright © 2022 中国科学院西北生态环境资源研究院文献情报中心 - Powered by SciEye