资源环境科技发展态势分析平台

  • 首页
  • 数据浏览
  • 知识图谱
  • 态势分析
  • 报告产品
登录  |  注册
  1. 首页
  2. 期刊论文
  3. 详情

The hurricane-induced decay of mesoscale eddies: an energy source for near-inertial waves

2025-12-27
查看原文
Qianqian Ren, Yu Zhang, Wei Wang

Abstract

Oceanic mesoscale eddies represent the most energetic component of the ocean circulation; however, their decay routes remain elusive, leaving a key gap in our understanding of the oceanic energy cascade. Here we combine satellite data with mooring measurements from the South China Sea in 2014 to reveal a rapid decay of oceanic eddies following the passage of typhoons. This decay is accompanied by a substantial generation of internal waves with near-inertial frequency in the ocean interior. The temporal correspondence and quantitatively commensurate energy changes indicate a direct energy transfer from eddy to internal wave field. We propose that typhoon-induced perturbations trigger an adjustment process within the eddy, resulting in energy loss through the radiation of near-inertial waves. Quantitatively supported by numerical model simulations, this mechanism plays a crucial role in the evolution of mesoscale eddies and points to a previously overlooked interior source of oceanic internal waves.

Similar content being viewed by others

Oceanic eddies induce a rapid formation of an internal wave continuum

Article Open access 16 December 2023

Three-Dimensional Observations of a Mesoscale Eddy in the Kuroshio Extension Based on Multiple Platforms

Article Open access 16 December 2025

Oceanic mesoscale eddies as crucial drivers of global marine heatwaves

Article Open access 23 May 2023

Data availability

All the data used directly for generating the figures in this study are archived at https://doi.org/10.5281/zenodo.17221258. The MASCS 1.0 dataset37 used in this paper are available at https://zenodo.org/records/12635331. The IBTrACS dataset38,39 are available at https://www.ncei.noaa.gov/products/international-best-track-archive. The sea level anomaly data distributed by AVISO are available at https://doi.org/10.48670/moi-00148. The surface drifter data64 are provided by the Drifter Data Assembly Center of National Oceanic and Atmospheric Administration (https://www.aoml.noaa.gov/phod/gdp/interpolated/data/all.php). The Argo profiling floats data59 are collected and made freely available by the international Argo Program and the national programs that contribute to it (https://argo.ucsd.edu, https://www.ocean-ops.org), as part of the Global Ocean Observing System. The WOA18 data60 can be downloaded from https://www.ncei.noaa.gov/products/world-ocean-atlas.

Code availability

The MITgcm model components are open source, which can be downloaded from https://mitgcm.org/source-code. The configuration of model simulations and the code for analysis in the study can be obtained from https://doi.org/10.5281/zenodo.17221258. The MATLAB_R2024b is used for plotting.

References

  1. Ferrari, R. & Wunsch, C. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41, 253–282 (2009).

    Google Scholar 

  2. Dong, C., McWilliams, J. C., Liu, Y. & Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 5, 1–6 (2014).

    Google Scholar 

  3. Chelton, D. B., Schlax, M. G., Samelson, R. M. & de Szoeke, R. A. Global observations of large oceanic eddies. Geophys. Res. Lett. 34, L15606 (2007).

    Google Scholar 

  4. Chelton, D. B., Schlax, M. G. & Samelson, R. M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167–216 (2011).

    Google Scholar 

  5. Zhang, Z., Zhang, Y., Wang, W. & Huang, R. X. Universal structure of mesoscale eddies in the ocean. Geophys. Res. Lett. 40, 3677–3681 (2013).

    Google Scholar 

  6. Zhang, Z., Wang, W. & Qiu, B. Oceanic mass transport by mesoscale eddies. Science 345, 322–324 (2014).

    Google Scholar 

  7. Charney, J. G. Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095 (1971).

    Google Scholar 

  8. Wunsch, C. & Ferrari, R. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281–314 (2004).

    Google Scholar 

  9. Zhai, X. & Greatbatch, R. J. Wind work in a model of the northwest Atlantic Ocean. Geophys. Res. Lett. 34, 1–4 (2007).

    Google Scholar 

  10. Hughes, C. W. & Wilson, C. Wind work on the geostrophic ocean circulation: an observational study of the effect of small scales in the wind stress. J. Geophys. Res. Oceans 113, C02016 (2008).

    Google Scholar 

  11. Reznik, G. M. & Grimshaw, R. Nonlinear geostrophic adjustment in the presence of a boundary. J. Fluid Mech. 471, 257–283 (2002).

    Google Scholar 

  12. Zhai, X., Johnson, H. L. & Marshall, D. P. Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci. 3, 608–612 (2010).

    Google Scholar 

  13. Polzin, K. L. Mesoscale eddy-internal wave coupling. Part II: energetics and results from polyMode. J. Phys. Oceanogr. 40, 789–801 (2010).

    Google Scholar 

  14. Xie, J. H. & Vanneste, J. A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech. 774, 143–169 (2015).

    Google Scholar 

  15. Thomas, L. N. On the modifications of near-inertial waves at fronts: implications for energy transfer across scales. Ocean Dyn. 67, 1335–1350 (2017).

    Google Scholar 

  16. Marshall, D. P. & Naveira Garabato, A. C. A conjecture on the role of bottom-enhanced diapycnal mixing in the parameterization of geostrophic eddies. J. Phys. Oceanogr. 38, 1607–1613 (2008).

    Google Scholar 

  17. Nikurashin, M., Vallis, G. K. & Adcroft, A. Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci. 6, 48–51 (2013).

    Google Scholar 

  18. Xie, X. et al. Pure inertial waves radiating from low-frequency flows over large-scale topography. Geophys. Res. Lett. 50, e2022GL099889 (2023).

    Google Scholar 

  19. de Marez, C., Meunier, T., Tedesco, P., L’Hégaret, P. & Carton, X. Vortex-wall interaction on the β-plane and the generation of deep submesoscale cyclones by internal Kelvin waves-current interactions. Geophys. Astrophys. Fluid Dyn. 114, 588–606 (2020).

    Google Scholar 

  20. Capet, X., McWilliams, J. C., Molemaker, M. J. & Shchepetkin, A. F. Mesoscale to submesoscale transition in the California current system. Part III: energy balance and flux. J. Phys. Oceanogr. 38, 2256–2269 (2008).

    Google Scholar 

  21. Mied, R. P., Shen, C. Y., Trump, C. L. & Lindemann, G. J. Internal-inertial waves in a sargasso sea front. J. Phys. Oceanogr. 16, 1751–1762 (1986).

    Google Scholar 

  22. Molemaker, M. J., McWilliams, J. C. & Yavneh, I. Baroclinic instability and loss of balance. J. Phys. Oceanogr. 35, 1505–1517 (2005).

    Google Scholar 

  23. Molemaker, M. J., McWilliams, J. C. & Capet, X. Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech. 654, 35–63 (2010).

    Google Scholar 

  24. Thomas, L. N. On the effects of frontogenetic strain on symmetric instability and inertia-gravity waves. J. Fluid Mech. 711, 620–640 (2012).

    Google Scholar 

  25. Shakespeare, C. J. & Taylor, J. R. A generalized mathematical model of geostrophic adjustment and frontogenesis: uniform potential vorticity. J. Fluid Mech. 736, 366–413 (2013).

    Google Scholar 

  26. Shakespeare, C. J. & Taylor, J. R. The spontaneous generation of inertia-gravity waves during frontogenesis forced by large strain: numerical solutions. J. Fluid Mech. 772, 508–534 (2015).

    Google Scholar 

  27. Williams, P. D., Haine, T. W. N. & Read, P. L. Inertia-gravity waves emitted from balanced flow: observations, properties and consequences. J. Atmos. Sci. 65, 3543–3556 (2008).

    Google Scholar 

  28. Vanneste, J. Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45, 147–172 (2013).

    Google Scholar 

  29. Johannessen, O. M., Sandven, S., Chunchuzov, I. P. & Shuchman, R. A. Observations of internal waves generated by an anticyclonic eddy: a case study in the ice edge region of the Greenland Sea. Tellus A Dyn. Meteorol. Oceanogr. 71, 1–12 (2019).

    Google Scholar 

  30. Zhao, B., Xu, Z., Li, Q., Wang, Y. & Yin, B. Transient generation of spiral inertia-gravity waves from a geostrophic vortex. Phys. Fluids 33, 032119 (2021).

    Google Scholar 

  31. Zhang, Y., Zhang, Z., Chen, D., Qiu, B. & Wang, W. Strengthening of the Kuroshio current by intensifying tropical cyclones. Science 368, 988–993 (2020).

    Google Scholar 

  32. Ni, X., Zhang, Y. & Wang, W. Hurricane influence on the oceanic eddies in the Gulf Stream region. Nat. Commun. 16, 583 (2025).

    Google Scholar 

  33. Blumen, W. Geostrophic adjustment. Rev. Geophys. Sp. Phys. 10, 485–528 (1972).

    Google Scholar 

  34. Reznik, G. M., Zeitlin, V. & Ben Jelloul, M. Nonlinear theory of geostrophic adjustment. Part 1. Rotating shallow-water model. J. Fluid Mech. 445, 93–120 (2001).

    Google Scholar 

  35. Zeitlin, V., Reznik, G. M. & Jelloul, M. Ben. Nonlinear theory of geostrophic adjustment. Part 2. Two-layer and continuously stratified primitive equations. J. Fluid Mech. 491, 207–228 (2003).

    Google Scholar 

  36. Jaimes, B. & Shay, L. K. Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr. 40, 1320–1337 (2010).

    Google Scholar 

  37. Zhang, H. et al. MASCS 1.0: synchronous atmospheric and oceanic data from a cross-shaped moored array in the northern South China Sea during 2014–2015. Earth Syst. Sci. Data 16, 5665–5679 (2024).

    Google Scholar 

  38. Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone best track data. Bull. Am. Meteor. Soc. 91, 363–376 (2010).

    Google Scholar 

  39. Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C. & Schreck, C. J. International best track archive for climate stewardship (IBTrACS) project, version 4. NOAA national centers for environmental information. https://doi.org/10.25921/82ty-9e16 (2018).

  40. Pujol, M. et al. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 12, 1067–1090 (2016).

    Google Scholar 

  41. Liu, G. et al. Energy Transfer Between Mesoscale Eddies and Near-Inertial Waves from Surface Drifter Observations. Geophys. Res. Lett. 50, 1–11 (2023).

    Google Scholar 

  42. Gill, A. E. On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr. 14, 1129–1151 (1984).

    Google Scholar 

  43. Price, J. F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 11, 153–175 (1987).

    Google Scholar 

  44. Alford, M. H., Cronin, M. F. & Klymak, J. M. Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the Northeast Pacific. J. Phys. Oceanogr. 42, 889–909 (2012).

    Google Scholar 

  45. Simmons, H. L. & Alford, M. H. Simulating the long-range swell of internal waves generated by ocean storms. Oceanography 25, 30–41 (2012).

    Google Scholar 

  46. Kunze, E. Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15, 544–565 (1985).

    Google Scholar 

  47. Alford, M. H., Mackinnon, J. A., Simmons, H. L. & Nash, J. D. Near-inertial internal gravity waves in the ocean. Ann. Rev. Mar. Sci. 8, 95–123 (2016).

    Google Scholar 

  48. Leaman, K. D. & Sanford, T. B. Vertical energy propagation of inertial waves: a vector spectral analysis of velocity profiles. J. Geophys. Res. 80, 1975–1978 (1975).

    Google Scholar 

  49. Klein, P. et al. Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height. Geophys. Res. Lett. 36, 1–5 (2009).

    Google Scholar 

  50. Okubo, A. Horizontal dispersion of floatable particles in vicinity of velocity singularities such as convergences. Deep-Sea Res. 17, 445–454 (1970).

    Google Scholar 

  51. Weiss, J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys. D. 48, 273–294 (1991).

    Google Scholar 

  52. Nikurashin, M. & Ferrari, R. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J. Phys. Oceanogr. 40, 1055–1074 (2010).

    Google Scholar 

  53. Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 454, 903–995 (1998).

    Google Scholar 

  54. Rossby, C.-G. On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II. J. Mar. Res. 1, 239–263 (1938).

    Google Scholar 

  55. Cahn, A. Jr. An investigation of the free oscillations of a simple current system. J. Meteorol. 2, 113–119 (1945).

    Google Scholar 

  56. Lee, D.-K. & Niiler, P. P. The inertial chimney: the near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res. 103, 7579–7591 (1998).

    Google Scholar 

  57. Lelong, M. P., Cuypers, Y. & Bouruet-Aubertot, P. Near-inertial energy propagation inside a Mediterranean anticyclonic eddy. J. Phys. Oceanogr. 50, 2271–2288 (2020).

    Google Scholar 

  58. Chen, Z. et al. Downward propagation and trapping of near-inertial waves by a westward-moving anticyclonic eddy in the subtropical northwestern Pacific Ocean. J. Phys. Oceanogr. 53, 2105–2120 (2023).

    Google Scholar 

  59. Wong, A. P. S. et al. Argo data 1999–2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Front. Mar. Sci. 7, 1–23 (2020).

    Google Scholar 

  60. Garcia, H. E. et al. World Ocean Atlas 2018: product documentation. https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18documentation.pdf (2019).

  61. Isern-Fontanet, J., García-Ladona, E. & Font, J. Identification of marine eddies from altimetric maps. J. Atmos. Ocean. Technol. 20, 772–778 (2003).

    Google Scholar 

  62. Gill, A. E. Atmosphere-Ocean Dynamics. (Academic Press, 1982).

  63. Nash, J. D., Alford, M. H. & Kunze, E. Estimating internal wave energy fluxes in the ocean. J. Atmos. Ocean. Technol. 22, 1551–1570 (2005).

    Google Scholar 

  64. Lumpkin, R. & Centurioni, L. Global drifter Program quality-controlled 6-hour interpolated data from ocean surface drifting buoys. NOAA National Centers for Environmental Information. Dataset. Accessed 2024-08-31 (2019).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China through Grant 42288101 of Y. Zhang and W. Wang.

Author information

Authors and Affiliations

  1. Key Laboratory of Physical Oceanography and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Academy of Future Ocean, Ocean University of China, Qingdao, China

    Qianqian Ren, Yu Zhang & Wei Wang

  2. Laboratory for Ocean Dynamics and Climate, Qingdao Marine Science and Technology Center, Qingdao, China

    Qianqian Ren, Yu Zhang & Wei Wang

Authors
  1. Qianqian Ren
    View author publications

    Search author on:PubMed Google Scholar

  2. Yu Zhang
    View author publications

    Search author on:PubMed Google Scholar

  3. Wei Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y. Z. and W. W. conceived the project and developed data analysis methodology. Q. R. carried out data analyses and the model simulation, and wrote the manuscript. Y. Z. and W. W. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Yu Zhang or Wei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: José Luis Iriarte Machuca and Alireza Bahadori. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Zhang, Y. & Wang, W. The hurricane-induced decay of mesoscale eddies: an energy source for near-inertial waves. Commun Earth Environ (2025). https://doi.org/10.1038/s43247-025-03113-3

Download citation

  • Received: 17 September 2024

  • Accepted: 08 December 2025

  • Published: 27 December 2025

  • DOI: https://doi.org/10.1038/s43247-025-03113-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Subjects

  • Ocean sciences
  • Physical oceanography

关于我们

面向碳中和与碳达峰研究领域,汇聚国内外相关研究进展,提供全球双碳领域开放数据和知识资源的智能感知、自动汇聚、关联融合与集成服务,面向科学决策和行业部门提供情报咨询服务。

联系我们

甘肃省兰州市天水中路
0931-8274859
gstded@llas.ac.cn

Copyright © 2022 中国科学院西北生态环境资源研究院文献情报中心 - Powered by SciEye