资源环境科技发展态势分析平台

  • 首页
  • 数据浏览
  • 知识图谱
  • 态势分析
  • 报告产品
登录  |  注册
  1. 首页
  2. 期刊论文
  3. 详情

Highly efficient heterogeneous thermal catalysis for noble-metal-free hydrogen production from formic acid

2025-12-27
查看原文
Liang Qiu, Lin Yao, Ping Wang, Zhiwei Jiang, Jinglin Li, Ying Li, Yixin Li, Zhaosong Wu, Muhammad Salman Nasir, Ding Wang, Xinqiang Wang, Zhen Huang, Baowen Zhou

Abstract

Hydrogen extraction from liquid hydrogen carriers is a promising strategy to address hydrogen storage and transportation challenges for a hydrogen economy. We report a novel heterogeneous catalytic architecture, Ni(Mn)-O-P/GaN nanowires, for efficient, selective, and ultra-stable hydrogen evolution from formic acid (FA). The catalyst achieves a high activity of 29.92 mol H2·gcat−1·h−1 with nearly 100% selectivity and a high turnover frequency (TOF) of 31,019.2 h−1 at 150 °C. It exhibits exceptional stability over 4000 hours under fluctuated temperatures (55-75 °C) with a turnover numbers (TONs) of 5,023,060, integrable with low-grade industrial waste heat. In-situ characterizations, isotope experiments, and density functional theory calculations collectively reveal that the synergy between Ni(Mn)-O-P and GaN are favorable for the O-H dissociation of FA with an interesting H-exchange mechanism with H2O while inhibiting the undesired FA dehydration and coking formation. An industrial prototype test validates practical on-demand hydrogen production using waste heat.

Data availability

All data generated in this study are provided in the Supplementary Information/Source Data file. All data are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Zhou, B. Liquid hydrogen carriers: Linking renewable energies for a carbon-neutral future. Innov. Energy 1, 100020 (2024).

    Google Scholar 

  2. Gunathilake, C. et al. A comprehensive review on hydrogen production, storage, and applications. Chem. Soc. Rev. 53, 10900–10969 (2024).

    Google Scholar 

  3. Musa, M., Hosseini, T., Lai, T., Haque, N. & Giddey, S. Life cycle assessment methodology evaluation and greenhouse gas impact of hydrogen production routes in Australia. Front. Energy. https://doi.org/10.1007/s11708-024-0962-4 (2024).

  4. Chen, G., Tu, X., Homm, G. & Weidenkaff, A. Plasma pyrolysis for a sustainable hydrogen economy. Nat. Rev. Mater. 7, 333–334 (2022).

    Google Scholar 

  5. de Lasa, H., Salaices, E., Mazumder, J. & Lucky, R. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem. Rev. 111, 5404–5433 (2011).

    Google Scholar 

  6. Chu, C., Wu, K., Luo, B., Cao, Q. & Zhang, H. Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology – a review. Carbon Resour. Convers. 6, 334–351 (2023).

    Google Scholar 

  7. Qiu, L. et al. 1-Dimensional metal Nitride-Supported platinum nanoclusters for Low-Temperature hydrogen production from formic acid. Chem. Eng. J. 500, 156940 (2024).

    Google Scholar 

  8. Niermann, M., Drünert, S., Kaltschmitt, M. & Bonhoff, K. Liquid organic hydrogen carriers (LOHCs) – techno-economic analysis of LOHCs in a defined process chain. Energy Environ. Sci. 12, 290–307 (2019).

    Google Scholar 

  9. Eppinger, J. & Huang, K.-W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2, 188–195 (2017).

    Google Scholar 

  10. Zhao, Z.-H. et al. Efficient capture and electroreduction of dilute CO2 into highly pure and concentrated formic acid aqueous solution. J. Am. Chem. Soc. 146, 14349–14356 (2024).

    Google Scholar 

  11. Lei, P.-X. et al. Integrated “Two-in-One” strategy for high-rate electrocatalytic CO2 reduction to formate. Angew. Chem. Int. Ed. 64, e202415726 (2025).

    Google Scholar 

  12. Coffey, R. S. The decomposition of formic acid catalysed by soluble metal complexes. Chem. Commun. (London), 923b–924b, (1967).

  13. Kar, S., Rauch, M., Leitus, G., Ben-David, Y. & Milstein, D. Highly efficient additive-free dehydrogenation of neat formic acid. Nat. Catal. 4, 193–201 (2021).

    Google Scholar 

  14. Guan, C., Pan, Y., Zhang, T., Ajitha, M. J. & Huang, K.-W. An update on formic acid dehydrogenation by homogeneous catalysis. Chem. – Asian J. 15, 937–946 (2020).

    Google Scholar 

  15. Onishi, N. et al. Development of effective catalysts for hydrogen storage technology using formic acid. Adv. Energy Mater. 9, 1801275 (2019).

    Google Scholar 

  16. Bai, S. et al. Metal-support interactions in heterogeneous catalytic hydrogen production of formic acid. Chem. Eng. J. 474, 145612 (2023).

    Google Scholar 

  17. Friend, C. M. & Xu, B. Heterogeneous catalysis: a central science for a sustainable future. Acc. Chem. Res. 50, 517–521 (2017).

    Google Scholar 

  18. Liu, J. et al. Heterogeneous catalysis for the environment. Innov. Mater. 2, 100090 (2024).

    Google Scholar 

  19. Zhang, A., Xia, J., Yao, Q. & Lu, Z.-H. Pd–WOx heterostructures immobilized by MOFs-derived carbon cage for formic acid dehydrogenation. Appl. Catal. B: Environ. 309, 121278 (2022).

    Google Scholar 

  20. Ma, C., Duan, J., Fu, Y. & Chang, J. Hydrogen production from additive-free formic acid over highly active metal organic frameworks-supported palladium-based catalysts. Int. J. Hydrog. Energy 46, 5259–5269 (2021).

    Google Scholar 

  21. Li, X. et al. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem. Int. Ed. 59, 15849–15854 (2020).

    Google Scholar 

  22. Kim, Y., Kim, S. -h, Ham, H. C. & Kim, D. H. Mechanistic insights on aqueous formic acid dehydrogenation over Pd/C catalyst for efficient hydrogen production. J. Catal. 389, 506–516 (2020).

    Google Scholar 

  23. Bhandari, S., Rangarajan, S., Maravelias, C. T., Dumesic, J. A. & Mavrikakis, M. Reaction mechanism of vapor-phase formic acid decomposition over platinum catalysts: dft, reaction kinetics experiments, and microkinetic modeling. ACS Catal. 10, 4112–4126 (2020).

    Google Scholar 

  24. Herran, M. et al. Plasmonic bimetallic two-dimensional supercrystals for H2 generation. Nat. Catal. 6, 1205–1214 (2023).

    Google Scholar 

  25. Liu, Q. et al. A Schiff base modified gold catalyst for green and efficient H2 production from formic acid. Energy Environ. Sci. 8, 3204–3207 (2015).

    Google Scholar 

  26. Shi, Y. et al. Combination of nanoparticles with single-metal sites synergistically boosts co-catalyzed formic acid dehydrogenation. Nat. Commun. 15, 8189 (2024).

    Google Scholar 

  27. Yang, Y., Xu, H., Cao, D., Zeng, X. C. & Cheng, D. Hydrogen production via efficient formic acid decomposition: engineering the surface structure of PD-based alloy catalysts by design. ACS Catal. 9, 781–790 (2019).

    Google Scholar 

  28. Karatok, M. et al. Achieving ultra-high selectivity to hydrogen production from formic acid on Pd–Ag alloys. J. Am. Chem. Soc. 145, 5114–5124 (2023).

    Google Scholar 

  29. Boddien, A. et al. Efficient dehydrogenation of formic acid using an iron catalyst. Science 333, 1733–1736 (2011).

    Google Scholar 

  30. Wen, M. et al. PdAg nanoparticles within core-shell structured zeolitic imidazolate framework as a dual catalyst for formic acid-based hydrogen storage/production. Sci. Rep. 9, 15675 (2019).

    Google Scholar 

  31. Kosider, A. et al. Enhancing the feasibility of Pd/C-catalyzed formic acid decomposition for hydrogen generation – catalyst pretreatment, deactivation, and regeneration. Catal. Sci. Technol. 11, 4259–4271 (2021).

    Google Scholar 

  32. Carrales-Alvarado, D. H. et al. Selective hydrogen production from formic acid decomposition over Mo carbides supported on carbon materials. Catal. Sci. Technol. 10, 6790–6799 (2020).

    Google Scholar 

  33. Guo, L. et al. Defect-driven nanostructuring of low-nuclearity Pt-Mo ensembles for continuous gas-phase formic acid dehydrogenation. Nat. Commun. 14, 7518 (2023).

    Google Scholar 

  34. Zacharska, M. et al. Factors influencing the performance of Pd/C catalysts in the green production of hydrogen from formic acid. ChemSusChem 10, 720–730 (2017).

    Google Scholar 

  35. Chen, W. et al. Molecular-level insights into the notorious CO poisoning of platinum catalyst. Angew. Chem. Int. Ed. 61, e202200190 (2022).

    Google Scholar 

  36. Dong, Y. et al. Pb-modified ultrathin RuCu nanoflowers for active, stable, and CO-resistant alkaline electrocatalytic hydrogen oxidation. Angew. Chem. Int. Ed. 62, e202311722 (2023).

    Google Scholar 

  37. Li, Y., Sadaf, S. M. & Zhou, B. Ga(X)N/Si nanoarchitecture: an emerging semiconductor platform for sunlight-powered water splitting toward hydrogen. Front. Energy 18, 56–79 (2024).

    Google Scholar 

  38. Zhou, P. et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023).

    Google Scholar 

  39. Dong, W. J. et al. Pt nanoclusters on GaN nanowires for solar-assisted seawater hydrogen evolution. Nat. Commun. 14, 179 (2023).

    Google Scholar 

  40. Zhou, B., Li, J., Dong, X. & Yao, L. GaN nanowires/Si photocathodes for CO2 reduction towards solar fuels and chemicals: advances, challenges, and prospects. Sci. China Chem. 66, 739–754 (2023).

    Google Scholar 

  41. Li, J. et al. Photo-thermal synergistic CO2 hydrogenation towards CO over PtRh bimetal-decorated GaN nanowires/Si. Chem. Sci. 15, 7714–7724 (2024).

    Google Scholar 

  42. Li, J. et al. Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowire-supported Ru nanoparticles on silicon. Nat. Commun. 15, 7393 (2024).

    Google Scholar 

  43. Wang, Z. et al. Air-promoted light-driven hydrogen production from bioethanol over Core/Shell Cr2O3@GaN nanoarchitecture. Angew. Chem. Int. Ed. 63, e202400011 (2024).

    Google Scholar 

  44. Araña, J. et al. Photocatalytic degradation of phenolic compounds with new TiO2 catalysts. Appl. Catal. B: Environ. 100, 346–354 (2010).

    Google Scholar 

  45. Raskó, J., Kecskés, T. & Kiss, J. Formaldehyde formation in the interaction of HCOOH with Pt supported on TiO2. J. Catal. 224, 261–268 (2004).

    Google Scholar 

  46. Wong, J. C. S., Linsebigler, A., Lu, G., Fan, J. & Yates, J. T. Jr. Photooxidation of CH3Cl on TiO2(110) single crystal and powdered TiO2 surfaces. J. Phys. Chem. 99, 335–344 (1995).

    Google Scholar 

  47. Hayden, B. E., Prince, K., Woodruff, D. P. & Bradshaw, A. M. An IRAS study of formic acid and surface formate adsorbed on Cu(110). Surf. Sci. 133, 589–604 (1983).

    Google Scholar 

  48. Jorgensen, S. W. & Madix, R. J. Active oxygen on Group VIII metals: activation of formic acid and formaldehyde on Pd(100). J. Am. Chem. Soc. 110, 397–400 (1988).

    Google Scholar 

  49. Chen, X. et al. Promoting water dissociation for efficient solar-driven CO2 electroreduction via improving hydroxyl adsorption. Nat. Commun. 14, 751 (2023).

    Google Scholar 

  50. Ye, N. et al. Industrial-level CO2 to formate conversion on Turing-structured electrocatalysts. Nat. Synth. 4, 799–807 (2025).

  51. Miyake, H., Okada, T., Samjeské, G. & Osawa, M. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Phys. Chem. Chem. Phys. 10, 3662–3669 (2008).

    Google Scholar 

  52. Aakeröy, C. The weak hydrogen bond in structural chemistry and biology by Gautam R. Desiraju and Thomas Steiner. IUCr monographs on crystallography 9, Oxford Science Publications, Oxford. 1999. ISBN 0198502524. Cryst. Growth Des. 1, 255–255 (2001).

    Google Scholar 

  53. Shi, X. et al. Integrable utilization of intermittent sunlight and residual heat for on-demand CO2 conversion with water. Nat. Commun. 15, 10135 (2024).

    Google Scholar 

  54. Zheng, X. et al. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat. Commun. 14, 4209 (2023).

    Google Scholar 

  55. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Google Scholar 

  56. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Google Scholar 

  57. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Google Scholar 

  58. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Google Scholar 

  59. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  60. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  61. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  62. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  63. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the Shanghai Pilot Program· for Basic Research-Shanghai Jiao Tong University (21T11400211), the National Natural Science Foundation of China (22579110), National Key Research and Development Program of China (2023YFB4004900). Z. J. is thankful for the financial support from the National Natural Science Foundation of China (22578517). P. W. and X. W. are thankful for the financial support from the National Natural Science Foundation of China (62321004).

Author information

Authors and Affiliations

  1. Key Laboratory for Power Machinery and Engineering of the Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

    Liang Qiu, Jinglin Li, Yixin Li, Zhaosong Wu, Ding Wang, Zhen Huang & Baowen Zhou

  2. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, China

    Lin Yao & Ying Li

  3. State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Nano-Optoelectronics Frontier Center of Ministry of Education (NFC-MOE), Peking University, Beijing, China

    Ping Wang & Xinqiang Wang

  4. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China

    Zhiwei Jiang

  5. State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, China

    Muhammad Salman Nasir

  6. Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China

    Xinqiang Wang

  7. Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, China

    Xinqiang Wang

Authors
  1. Liang Qiu
    View author publications

    Search author on:PubMed Google Scholar

  2. Lin Yao
    View author publications

    Search author on:PubMed Google Scholar

  3. Ping Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Zhiwei Jiang
    View author publications

    Search author on:PubMed Google Scholar

  5. Jinglin Li
    View author publications

    Search author on:PubMed Google Scholar

  6. Ying Li
    View author publications

    Search author on:PubMed Google Scholar

  7. Yixin Li
    View author publications

    Search author on:PubMed Google Scholar

  8. Zhaosong Wu
    View author publications

    Search author on:PubMed Google Scholar

  9. Muhammad Salman Nasir
    View author publications

    Search author on:PubMed Google Scholar

  10. Ding Wang
    View author publications

    Search author on:PubMed Google Scholar

  11. Xinqiang Wang
    View author publications

    Search author on:PubMed Google Scholar

  12. Zhen Huang
    View author publications

    Search author on:PubMed Google Scholar

  13. Baowen Zhou
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.Z. and Z.H. proposed the research. L.Q., Y.L., and Y.X.L. conducted the experiments. P.W. and X.W. did the growth of the material. L.Q. conducted the theoretical calculations. Z.H. provided the computing resource. Z.W., M.S., and D.W. participated in the result discussion and data analysis. L.Y., B.Z., Z.J., and J.L. joined the discussion about the theoretical investigations. L.Q. and B.Z. wrote the paper with the contributions of all co-authors. B.Z. and Z.H. led the work.

Corresponding authors

Correspondence to Lin Yao, Ping Wang, Zhiwei Jiang or Baowen Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jose Luis Santos and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Yao, L., Wang, P. et al. Highly efficient heterogeneous thermal catalysis for noble-metal-free hydrogen production from formic acid. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67895-y

Download citation

  • Received: 18 July 2025

  • Accepted: 11 December 2025

  • Published: 27 December 2025

  • DOI: https://doi.org/10.1038/s41467-025-67895-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Subjects

  • Environmental chemistry
  • Heterogeneous catalysis
  • Materials for energy and catalysis

关于我们

面向碳中和与碳达峰研究领域,汇聚国内外相关研究进展,提供全球双碳领域开放数据和知识资源的智能感知、自动汇聚、关联融合与集成服务,面向科学决策和行业部门提供情报咨询服务。

联系我们

甘肃省兰州市天水中路
0931-8274859
gstded@llas.ac.cn

Copyright © 2022 中国科学院西北生态环境资源研究院文献情报中心 - Powered by SciEye