资源环境科技发展态势分析平台

  • 首页
  • 数据浏览
  • 知识图谱
  • 态势分析
  • 报告产品
登录  |  注册
  1. 首页
  2. 期刊论文
  3. 详情

Evaluating machine learning efficiency and accuracy for real time flash flood mapping

2025-12-30
查看原文
Hafez Mirzapour, Ali Haghizadeh, Mahdi Soleimani Motlagh

Abstract

Flash floods endanger communities and ecosystems in rugged regions, but precise prediction is difficult due to environmental complexity. This study evaluates six machine learning algorithms for flash flood mapping in Iran’s Dez Basin, a region growing more vulnerable to climate extremes. We developed an integrated geospatial database incorporating 32 climatic, anthropogenic, and physiographic parameters, validated through extensive field surveys documenting historical flood events. The dataset (70% training, 30% validation) was analyzed using: (1) H2O Deep Learning framework, (2) Random Forest (RF), and (3) four boosting methods (AdaBoost, XGBoost, LightGBM, CatBoost). The RF model achieved exceptional predictive performance (AUC = 0.89, accuracy = 95%), outperforming other techniques by 6–12% in classification metrics. Sensitivity analysis identified precipitation intensity (β = 0.34, p < 0.01), watershed area (β = 0.28), and slope gradient (β = 0.25) as statistically significant dominant controls.These findings advance flood risk management in three key ways: First, they demonstrate RF’s superiority in handling heterogeneous geospatial data. Second, the 30 m-resolution susceptibility map provides actionable insights for land-use planning. Third, the methodology offers a transferable framework for arid/semi-arid regions globally. We recommend policymakers prioritize slope stabilization and early-warning systems in high-risk zones (AUC > 0.85) to enhance community resilience.

Data availability

The data are available upon request from the corresponding author.

References

  1. Holton, J. R., Pyle, J. A. & Curry, J. A. Encyclopedia of Atmospheric Sciences. Second Edition. (Academic Press, 2015).

  2. Georgakakos, K. P. Analytical results for operational flash flood guidance. J. Hydrol. 317 (1–2), 81–103. https://doi.org/10.1016/j.jhydrol.2005.05.009 (2006).

    Google Scholar 

  3. Norbiato, D., Borga, M., Esposti, D., Gaume, S., Anquetin, E. & S Flash flood warning based on rainfall depth-duration thresholds and soil moisture conditions: an assessment for gauged and ungauged basins. J. Hydrol. 362 (3–4), 274–290. https://doi.org/10.1016/j.jhydrol.2008.08.023 (2008).

    Google Scholar 

  4. Costache, R. et al. Flash-flood hazard using deep learning based on H2O R package and fuzzy-multicriteria decision-making analysis. J. Hydrol. 609, 127747. https://doi.org/10.1016/j.jhydrol.2022.127747 (2022).

    Google Scholar 

  5. Youssef, A. M., Pradhan, B. & Sefry, S. A. Flash flood susceptibility assessment in Jeddah City (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ. Earth Sci. 75 (1), 12. https://doi.org/10.1007/s12665-015-4830-8 (2016).

    Google Scholar 

  6. Habibi, A., Delavar, M. R., Sadeghian, M. S. & Nazari, B. Flood susceptibility mapping and assessment using regularized Random forest and naïve bayes algorithms. ISPRS Annals Photogrammetry Remote Sens. Spat. Inform. Sci., 10, 241–248. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-241-2023 (2023).

  7. Ren, H. et al. Flood susceptibility assessment with random sampling strategy in ensemble learning (RF and XGBoost). Remote Sens. 16 (2), 320. https://doi.org/10.3390/rs16020320 (2024).

    Google Scholar 

  8. SELLAMI, E. M. & Rhinane, H. Google Earth engine and machine learning for flash flood exposure Mapping—Case study: Tetouan, Morocco. Geosciences 14 (6), 152. https://doi.org/10.3390/geosciences14060152 (2024).

    Google Scholar 

  9. Elghouat, A. et al. Integrated approaches for flash flood susceptibility mapping: Spatial modeling and comparative analysis of statistical and machine learning models. A case study of the Rheraya watershed, Morocco. J. Water Clim. Change. 15 (8), 3624–3646. https://doi.org/10.2166/wcc.2024.726 (2024).

    Google Scholar 

  10. Al-Kindi, K. M. & Alabri, Z. Investigating the role of the key conditioning factors in flood susceptibility mapping through machine learning approaches. Earth Syst. Environ. 8 (1), 63–81. https://doi.org/10.1007/s41748-023-00369-7 (2024).

    Google Scholar 

  11. Wahba, M. et al. Forecasting of flash flood susceptibility mapping using Random forest regression model and geographic information systems. Heliyon https://doi.org/10.1016/j.heliyon.2024.e33982 (2024).

    Google Scholar 

  12. Rutledge, D. N. & Barros, A. S. Durbin–Watson statistic as a morphological estimator of information content. Anal. Chim. Acta. 454 (2), 277–295. https://doi.org/10.1016/S0003-2670(01)01555-0 (2002).

    Google Scholar 

  13. Salas, J. D. Analysis and modeling of hydrological time series. In: Maidment DR, editor. Handbook of hydrology. (McGraw-Hill, 1993).

  14. Mohammadzadeh, A. & Massoudzadegan, S. Forecasting daily volatility and value at risk with high frequency data. Dev. Transformation Manage. Q. 8 (27), 63–74 (2015).

    Google Scholar 

  15. Choubin, B. et al. Regional groundwater potential analysis using classification and regression trees. In Spatial modeling in GIS and R for earth and environmental sciences. 485–498 https://doi.org/10.1016/B978-0-12-815226-3.00022-3 (2019).

  16. Monfared, B., Najafabadi, M. & Nafarzadegan, A. R., Flood zoning and identification of effective factors in flood occurrence: A case study of the urban watershed of Bastak. Master’s thesis, Department of Desert Management and Control. (Hormozgan University, 2021).

  17. Eisfelder, C. et al. Cropland and crop type classification with Sentinel-1 and Sentinel-2 time series using Google Earth engine for agricultural monitoring in Ethiopia. Remote Sens. 16 (5), 866. https://doi.org/10.3390/rs16050866 (2024).

    Google Scholar 

  18. Rasti, S., Mahdavifardnh, M., Shaykh Ghaderi, H., Nasiri, A. & Taktaz, N. Z. Improving classification accuracy by combining multi-season images of Sentinel 1 and 2 in order to prepare a landuse map in the cloud space of Google Earth engine (case study: Guilan province). Geogr. Hum. Relations. 5 (3), 357–373. https://doi.org/10.22034/gahr.2022.336692.1696 (2022).

    Google Scholar 

  19. Yoothong, K., Moncharoen, L., Vijarnson, P. & Eswaran, H. Clay mineralogy of Thai soils. Appl. Clay Sci. 11 (5–6), 357–371. https://doi.org/10.1016/S0169-1317(96)00033-6 (1997).

    Google Scholar 

  20. Kariuki, P. C., Woldai, T. & Van Der Meer, F. Effectiveness of spectroscopy in identification of swelling indicator clay minerals. Int. J. Remote Sens. 25 (2), 455–469. https://doi.org/10.1080/0143116031000084314 (2004).

    Google Scholar 

  21. Stenberg, B., Rossel, R. A. V., Mouazen, A. M. & Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 107, 163–215. https://doi.org/10.1016/S0065-2113(10)07005-7 (2010).

    Google Scholar 

  22. Danoedoro, P. & Zukhrufiyati, A. Integrating spectral indices and geostatistics based on Landsat-8 imagery for surface clay content mapping in Gunung Kidul area, Yogyakarta, Indonesia. In: Proceedings of the 36th Asian Conference on Remote Sensing; ; Asia Quezon, Metro Manila, Philippines. (2015).

  23. Sabins, F. F. Remote sensing for mineral exploration. Ore Geol. Rev. 14, 157–183. https://doi.org/10.1016/S0169-1368(99)00007-4 (1999).

    Google Scholar 

  24. Khan, N. M., Rastoskuev, V. V., Sato, Y. & Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 77, 96–109. https://doi.org/10.1016/j.agwat.2004.09.038 (2005).

    Google Scholar 

  25. Asfaw, E., Suryabhagavan, K. V. & Argaw, M. Soil salinity modeling and mapping using remote sensing and GIS: the case of Wonji sugar cane irrigation farm, Ethiopia. J. Saudi Soc. Agric. Sci. 17, 250–258. https://doi.org/10.1016/j.jssas.2016.05.003 (2018).

    Google Scholar 

  26. Caloz, R., Abednego, B. & Collet, C. The Normalisation of a Soil Brightness Index for the Study of Changes in Soil Conditions. In: Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing. 18–22 (1988).

  27. Bousbih, S. et al. Soil texture Estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sens. 11 (13), 1520. https://doi.org/10.3390/rs11131520 (2019).

    Google Scholar 

  28. Parvaresh, A., Mahdavi, R., Melkian, A., Ismailpour, Y. & Halisaz, A. Prioritizing the flood potential of sub-watersheds in Sokhon. Hormozgan using fuzzy TOPSIS and ELECTRE methods. Doctoral dissertation in Watershed Sciences and Engineering. (Hormozgan University, 2018).

  29. Moore, I. D. & Grayson, R. B. Landson. Digital terrain modeling: A review of hydrological, Geomorphological and biological application. Modelling Hydrology. 5, 3–30. https://doi.org/10.1002/hyp.3360050103 (1991).

    Google Scholar 

  30. Moore, I. D. & Burch, G. J. Sediment transport capacity of sheet and Rill flow: application of unit stream power theory. Water Resour. Res. 22 (8), 1350–1360. https://doi.org/10.1029/WR022i008p01350 (1986).

    Google Scholar 

  31. Nookaratnam, K., Srivastava, Y. K., Venkateswarao, V., Amminedu, E. & Murthy, K. S. R. Check dam positioning by prioritization of micro watersheds using SYI model and morphometric analysis remote sensing and GIS perspective. J. Indian Soc. Remote Sens. 33 (1), 25–28. https://doi.org/10.1007/BF02989988 (2005).

    Google Scholar 

  32. Schumn, S. A. Evolution of drainage basins and slopes in bund land of Peth Amboy, new Jersey. Bull. Geol. Soc. Am. 67, 597–646 (1956).

    Google Scholar 

  33. Horton, R. E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 56, 275–370. https://doi.org/10.1130/0016-7606%281945%2956%5B275%3AEDOSAT%5C2.0.CO%3B2 (1945).

  34. Miller, V. C. A Quantitative Geomorphic Study of Drainage Basin Characteristics on the Clinch Mountain Area, Virgina and Tennessee, Proj.  389–402 (Columbia University, 1953).

  35. Strahler, A. N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union. 38, 913–920 (1957).

    Google Scholar 

  36. Strahler, A. N. & Part, I. I. Quantitative geomorphology of drainage basins and channel networks. In Handbook of Applied Hydrology 4–39 (McGraw-Hill, 1964).

    Google Scholar 

  37. Schumm, S. A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 67, 597–646. https://doi.org/10.1130/0016-7606%281956%2967%5B597%3AEODSAS%5C2.0.CO%3B2 (1956).

  38. LeCun, Y. & Yoshua, B. Deep learning. Nature 521(7553), 436–444. https://doi.org/10.1038/nature14539 (2015).

    Google Scholar 

  39. Schmidhuber, J. Deep Learning in Neural Network: An Overview. Neural Networks 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003 (2015).

    Google Scholar 

  40. Choi, J. et al. An optimal boosting algorithm based on nonlinear conjugate gradient method. J. Korean Soc. Industr. Appl. Mathemat. 22(1), 1–13 (2018).

    Google Scholar 

  41. Divakar, K. & Chitharanjan, K. Performance evaluation of credit card fraud transactions using boosting algorithms. Int. J. Electron. Commun. Comput. Eng. IJECCE. 10 (6), 262–270 (2019).

    Google Scholar 

  42. Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1), 119–139. https://doi.org/10.1006/jcss.1997.1504 (1997).

    Google Scholar 

  43. Iban, M. C. & Bilgilioglu, S. S. Snow avalanche susceptibility mapping using novel tree-based machine learning algorithms (XGBoost, NGBoost, and LightGBM) with eXplainable artificial intelligence (XAI) approach. Stoch. Env. Res. Risk Assess. 37 (6), 2243–2270. https://doi.org/10.1007/s00477-023-02392-6 (2023).

    Google Scholar 

  44. Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. https://doi.org/10.1214/aos/1013203451 (2001).

    Google Scholar 

  45. Du, J., Fang, J., Xu, W. & Shi, P. alysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stochastic Environ. Res. Risk Assess. 27, 377–387. https://doi.org/10.1007/s00477-012-0589-6 (2013).

    Google Scholar 

  46. Hajizadeh, H., Farhang, M. & Vafaie Sadr, A. Searching for cosmic strings in Planck data using image processing tools and machine learning. Master’s thesis in Physics. (Shahid Beheshti University, 2020).

  47. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 785–794 https://doi.org/10.1145/2939672.2939785 (2016).

  48. Brownlee, J. Imbalanced Classification with Python: Better metrics, Balance Skewed classes, cost-sensitive Learning. (Machine Learning Mastery, 2020).

  49. Truong, V. H., Papazafeiropoulos, G., Vu, Q. V., Pham, V. T. & Kong, Z. Predicting the patch load resistance of stiffened plate girders using machine learning algorithms. Ocean Eng. 240, 109886. https://doi.org/10.1016/j.oceaneng.2021.109886 (2021).

    Google Scholar 

  50. Liang, Y. et al. Product marketing prediction based on XGboost and LightGBM algorithm, In: 2nd International Conference on Artificial Intelligence and Pattern Recognition. 150–153 https://doi.org/10.1145/3357254.3357290 (2019).

  51. Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst., 30. (2017).

  52. Dorogush, A. V., Ershov, V. & Gulin, A. CatBoost: gradient boosting with categorical features support. ArXiv Preprint. https://doi.org/10.48550/arXiv.1810.11363 (2018). arXiv:1810.11363.

    Google Scholar 

  53. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. CatBoost: unbiased boosting with categorical features. Adv. Neural. Inf. Process. Syst. 31. (2018).

  54. Saber, M. et al. Enhancing flood risk assessment through integration of ensemble learning approaches and physical-based hydrological modeling. Geomatics Nat. Hazards Risk. 14 (1), 2203798. https://doi.org/10.1080/19475705.2023.2203798 (2023).

    Google Scholar 

  55. Mahdavi, M. Applied hydrology 8th edn, Vol. 2, 437 (Tehran University, 2013).

    Google Scholar 

  56. Talikhoshk, S., Mohseni Saravi, M., Vafakhah, M. & Khalighi Sigaroodi, S. Comparison of neuro-fuzzy and SCS methods in prioritizing sub-watersheds for watershed management actions: A case study of the Talghan watershed. Scientific-Research J. Rangel. Watershed Manage. 68 (2), 213–225. https://doi.org/10.22059/jrwm.2015.54922 (2015).

    Google Scholar 

  57. Hosseini, Y. Comparison of SCS unit hydrograph and uniform methods in estimating the maximum flood discharge of the Amoughin basin. Hydrogeomorphology 21 (6), 87–107 (2019).

    Google Scholar 

  58. Esfandiari, F., Pourganji, Z., Mostafazadeh, R. & Aghaei, M. Comparison of methods for converting effective precipitation to surface runoff in simulating flood hydrographs in the Naneh Karan basin, ardabil Province. Hydrogeomorphology 9 (32), 63–86. https://doi.org/10.22034/hyd.2022.50000.1624 (2022).

    Google Scholar 

  59. Soleimani, K., Shokrian, F., Abdoli, S. & Sabri, E. Prioritizing flood risk potential in the Talhar watershed using. Geographic Inform. Syst. Ecohydrology 8(3), 749–762. https://doi.org/10.22059/ije.2021.324244.1509 (2021).

    Google Scholar 

  60. Haghizadeh, A., Mohammadlou, M. & Noori, F. Simulation of rainfall-runoff processes using artificial neural networks, adaptive neuro-fuzzy systems, and multivariate regression: A case study of the Khorramabad watershed. Hydrogeomorphology 2 (2), 233–243. https://doi.org/10.22059/ije.2015.56243 (2015).

    Google Scholar 

  61. Zema, D. A., Parhizkar, M., Plaza-Alvarez, P. A., Xu, X. & Lucas-Borja, M. E. Using random forest and multiple-regression models to predict changes in surface runoff and soil erosion after prescribed fire. Model. Earth Syst. Environ. 10 (1), 1215–1228. https://doi.org/10.1007/s40808-023-01838-8 (2024).

    Google Scholar 

  62. Hasnaoui, Y. et al. Enhanced machine learning models development for flash flood mapping using Geospatial data. Euro-Mediterranean J. Environ. Integr. 9 (3), 1087–1107 (2024).

    Google Scholar 

  63. Xu, K., Han, Z., Xu, H. & Bin, L. Rapid prediction model for urban floods based on a light gradient boosting machine approach and Hydrological–Hydraulic model. Int. J. Disaster Risk Sci. 14 (1), 79–97. https://doi.org/10.1007/s13753-023-00465-2 (2023).

    Google Scholar 

  64. Hasnaoui, Y. et al. Integrated Remote Sensing and Deep Learning Models for Flash Flood Detection Based on Spatio-temporal Land Use and Cover Changes in the Mediterranean Region 1–23 (Environmental modeling & assessment, 2025).

  65. Abedi, R., Costache, R., Shafizadeh-Moghadam, H. & Pham, Q. B. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 37 (19), 5479–5496. https://doi.org/10.1080/10106049.2021.1920636 (2022).

    Google Scholar 

  66. Janizadeh, S., Vafakhah, M., Kapelan, Z. & Mobarghaee Dinan, N. Hybrid XGboost model with various bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling. Geocarto Int. 37 (25), 8273–8292. https://doi.org/10.1080/10106049.2021.1996641 (2022).

    Google Scholar 

  67. Vafakhah, M., Nasiri Khiavi, A., Janizadeh, S. & Ganjkhanlo, H. Evaluating different machine learning algorithms for snow water equivalent prediction. Earth Sci. Inf. 15 (4), 2431–2445. https://doi.org/10.1007/s12145-022-00846-z (2022).

    Google Scholar 

  68. Moharrami, M., Attarchi, S., Gloaguen, R. & Alavipanah, S. K. Integration of Sentinel-1 and Sentinel-2 data for ground truth sample migration for multi-temporal land cover mapping. Remote Sens. ; 16(9):1566. https://doi.org/10.3390/rs16091566 (2024).

  69. Mullissa, A. et al. LUCA: A Sentinel-1 SAR-Based global forest landuse change alert. Remote Sens. 16 (12), 2151. https://doi.org/10.3390/rs16122151 (2024).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran

    Hafez Mirzapour, Ali Haghizadeh & Mahdi Soleimani Motlagh

Authors
  1. Hafez Mirzapour
    View author publications

    Search author on:PubMed Google Scholar

  2. Ali Haghizadeh
    View author publications

    Search author on:PubMed Google Scholar

  3. Mahdi Soleimani Motlagh
    View author publications

    Search author on:PubMed Google Scholar

Contributions

AH, HM; Methodology: AH, HM; Formal analysis and investigation: AH, HM, MS; Writing—original draft preparation: AH, HM; Writing— review and editing: AH, HM, MS; Supervision: AH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali Haghizadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzapour, H., Haghizadeh, A. & Motlagh, M.S. Evaluating machine learning efficiency and accuracy for real time flash flood mapping. Sci Rep (2025). https://doi.org/10.1038/s41598-025-34037-9

Download citation

  • Received: 06 August 2025

  • Accepted: 24 December 2025

  • Published: 30 December 2025

  • DOI: https://doi.org/10.1038/s41598-025-34037-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Flash flood susceptibility
  • Machine learning comparison
  • Geospatial modeling
  • Climate adaptation
  • Dez Basin

Subjects

  • Climate sciences
  • Environmental sciences
  • Hydrology
  • Natural hazards

关于我们

面向碳中和与碳达峰研究领域,汇聚国内外相关研究进展,提供全球双碳领域开放数据和知识资源的智能感知、自动汇聚、关联融合与集成服务,面向科学决策和行业部门提供情报咨询服务。

联系我们

甘肃省兰州市天水中路
0931-8274859
gstded@llas.ac.cn

Copyright © 2022 中国科学院西北生态环境资源研究院文献情报中心 - Powered by SciEye