Cities are highly vulnerable to climate change, yet the interactions between urban and regional climate remain insufficiently understood, especially over climate changes timescales and when comparing cities globally. Therefore, this study assesses the capabilities of two CORDEX-CORE regional climate models (REMO and RegCM) in representing urban areas globally, focusing on land-surface characteristics and urban heat island (UHI) evaluation. Despite their relatively coarse resolution (~25 km), the two models can capture urban imprints of large cities. RegCM, with a single-layer urban canopy parameterization, represents the UHI, especially at night. REMO tends to underestimate nighttime UHI due to its simple bulk urban scheme. Across models, impervious surface areas are consistently underestimated, with notable geographic imbalances across the world. Going forward, regional climate model simulations for cities require both enhanced urban parameterizations and the integration of refined urban land-use data.
CORDEX-CORE and EURO-CORDEX data for daily maximum and minimum near surface temperature, orography, and land area fraction are publicly available through ESGF (https://esgf-data.dkrz.de/search/cordex-dkrz/). Urban and impervious surface area (ISA) fractions were collected and post-processed as part of this work and have been made publicly available on Zenodo (v1.0.0, https://doi.org/10.5281/zenodo.15700266). In addition, we provide detailed summary statistics for ISA - covering all cities, reference products, and model outputs, including mean values, percentiles (P0, 5, 25, 50, 75, 90, 100), and the number of pixels exceeding ISA thresholds of 0 and 0.1—available as both GeoJSON and CSV files on Zenodo (v1, https://doi.org/10.5281/zenodo.17313478).
The Python code for city selection, impervious surface fraction calculation and related tasks is available on GitHub (https://github.com/FPS-URB-RCC/CORDEX-CORE-WG). The Python code for the urban heat island analysis is also available on GitHub (https://github.com/FPS-URB-RCC/urclimask).
Dodman, D. et al. Cities, settlements and key infrastructure. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [eds. Pörtner, H.-O. et al.] 907–1040 (Cambridge University Press, USA).
UN Habitat. Guiding Principles for City Climate Action Planning. 40 https://unhabitat.org/guiding-principles-for-city-climate-action-planning (2015).
Masson, V., Lemonsu, A., Hidalgo, J. & Voogt, J. Urban Climates and Climate Change. Annu. Rev. Environ. Resour. 45, 411–444 (2020).
Oke, T. R., Mills, G., Christen, A. & Voogt, J. A. Urban Climates (Cambridge University Press, 2017).
Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M. & McAlpine, C. A. The impact of urbanization and climate change on urban temperatures: a systematic review. Landsc. Ecol. 32, 1921–1935 (2017).
Hertwig, D., Ng, M., Grimmond, S., Vidale, P. L. & McGuire, P. C. High-resolution global climate simulations: representation of cities. Int. J. Climatol. 41, 3266–3285 (2021).
Katzfey, J., Schlünzen, H., Hoffmann, P. & Thatcher, M. How an urban parameterization affects a high-resolution global climate simulation. Q. J. R. Meteorol. Soc. 146, 3808–3829 (2020).
Katzfey, J., Schlünzen, K. H. & Hoffmann, P. Effects of urban areas on the diurnal cycle of temperature and precipitation in a global climate simulation. Q. J. R. Meteorol. Soc. 150, 4885–4914 (2024).
Oleson, K. W. & Feddema, J. Parameterization and surface data improvements and new capabilities for the community land model urban (CLMU). J. Adv. Model. Earth Syst. 12, e2018MS001586 (2020).
Argüeso, D., Evans, J. P., Fita, L. & Bormann, K. J. Temperature response to future urbanization and climate change. Clim. Dyn. 42, 2183–2199 (2014).
Hamdi, R. et al. The state-of-the-art of urban climate change modeling and observations. Earth Syst. Environ. 4, 631–646 (2020).
Nazarian, N. et al. Integration of urban climate research within the global climate change discourse. PLoS Clim. 3, e0000473 (2024).
Langendijk, G. S., Rechid, D. & Jacob, D. Urban areas and urban–rural contrasts under climate change: what does the EURO-CORDEX ensemble tell us?—investigating near surface humidity in Berlin and its surroundings. Atmosphere 10, 730 (2019).
Langendijk, G. S., Rechid, D., Sieck, K. & Jacob, D. Added value of convection-permitting simulations for understanding future urban humidity extremes: case studies for Berlin and its surroundings. Weather Clim. Extrem. 33, 100367 (2021).
Langendijk, G. S. et al. Towards better understanding the urban environment and its interactions with regional climate change—the WCRP CORDEX Flagship Pilot Study URB-RCC. Urban Clim. 58, 102165 (2024).
Michau, Y., Lemonsu, A., Lucas-Picher, P., Schneider, M. & Caillaud, C. On the future evolution of heatwaves in French cities and associated rural areas: insights from a convection-permitting model. Urban Clim. 55, 101920 (2024).
Giorgi, F. et al. The CORDEX-CORE EXP-I initiative: description and highlight results from the initial analysis. Bull. Am. Meteorol. Soc. 103, E293–E310 (2022).
Jacob, D. et al. Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Reg. Environ. Change 20, 51 (2020).
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
CORDEX. CORDEX experiment design for dynamical downscaling of CMIP6. https://doi.org/10.5281/ZENODO.15199301 (2025).
Langendijk, G. S. et al. CORDEX-CORE urban and impervious surface area dataset (1.0.0). Zenodo https://doi.org/10.5281/zenodo.15700267 (2025).
Karra, K. et al. Global land use/land cover with Sentinel 2 and deep learning. In 2021, IEEE International Geoscience and Remote Sensing Symposium IGARSS 4704–4707 (IEEE, 2021).
Zanaga, D. et al. ESA WorldCover 10 m 2020 v100. [object Object] https://doi.org/10.5281/ZENODO.5571936 (2021).
Demuzere, M. et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst. Sci. Data 14, 3835–3873 (2022).
Chakraborty, T. et al. Large disagreements in estimates of urban land across scales and their implications. Nat. Commun. 15, 9165 (2024).
Florczyk, A. et al. GHS-UCDB R2019A - GHS Urban Centre Database 2015, multitemporal and multidimensional attributes. European Commission, Joint Research Centre (JRC) https://doi.org/10.2905/53473144-B88C-44BC-B4A3-4583ED1F547E (2019).
Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).
Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).
Daniel, M. et al. Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions. Clim. Dyn. 52, 2745–2764 (2019).
Mohan, M. et al. Assessment of urban heat island intensities over Delhi. In 4 (Yokohama, 2009).
Siswanto, S. et al. Spatio-temporal characteristics of urban heat Island of Jakarta metropolitan. Remote Sens. Appl. Soc. Environ. 32, 101062 (2023).
Lozada, M. & Camilloni, I. Variabilidad espacio-temporal de la isla de calor superficial en tres ciudades argentinas. Meteorologica 47, e012–e012 (2022).
Rajeswari, J. R. et al. Urban heat island phenomenon in a desert, coastal city: the impact of urbanization. Urban Clim. 56, 102016 (2024).
Freitag, B. M., Nair, U. S. & Niyogi, D. Urban modification of convection and rainfall in complex terrain. Geophys. Res. Lett. 45, 2507–2515 (2018).
Sátyro, Z. C., Farias, C., Candido, L. A. & Veiga, J. A. Urban sprawl can inhibit convection and decrease rainfall over an Amazonian city during a squall line type phenomenon. Urban Clim. 40, 101023 (2021).
Peterson, T. C. Assessment of urban versus rural in situ surface temperatures in the contiguous United States: no difference found. J. Clim. 16, 2941–2959 (2003).
Best, M. J. & Grimmond, C. S. B. Key conclusions of the first international urban land surface model comparison project. Bull. Am. Meteorol. Soc. 96, 805–819 (2015).
Grimmond, C. S. B. et al. The international urban energy balance models comparison project: first results from phase 1. J. Appl. Meteorol. Climatol. 49, 1268–1292 (2010).
Grimmond, C. S. B. et al. Initial results from Phase 2 of the international urban energy balance model comparison. Int. J. Climatol. 31, 244–272 (2011).
Jongen, H. J. et al. The water balance representation in urban-plumber land surface models. J. Adv. Model. Earth Syst. 16, e2024MS004231 (2024).
Lipson, M. J. et al. Evaluation of 30 urban land surface models in the Urban-PLUMBER project: phase 1 results. Q. J. R. Meteorol. Soc. 150, 126–169 (2024).
Lean, H. W. et al. The hectometric modelling challenge: Gaps in the current state of the art and ways forward towards the implementation of 100-m scale weather and climate models. Q. J. R. Meteorol. Soc. 150, 4671–4708 (2024).
Zhao, L. et al. Global multi-model projections of local urban climates. Nat. Clim. Change 11, 152–157 (2021).
Ching, J. et al. WUDAPT: an urban weather, climate, and environmental modeling infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 99, 1907–1924 (2018).
Demuzere, M., Argüeso, D., Zonato, A. & Kittner, J. W2W: a Python package that injects WUDAPT’s Local Climate Zone information in WRF. J. Open Source Softw. 7, 4432 (2022).
Demuzere, M., He, C., Martilli, A. & Zonato, A. Technical documentation for the hybrid 100-m global land cover dataset with Local Climate Zones for WRF. https://doi.org/10.5281/ZENODO.7670792 (2023).
Campanale, A., Adinolfi, M., Raffa, M., Schulz, J.-P. & Mercogliano, P. Investigating urban heat islands over Rome and Milan during a summer period through the TERRA_URB parameterization in the ICON model. Urban Clim. 60, 102335 (2025).
Canton, J. & Dipankar, A. Climatological analysis of urban heat island effects in Swiss cities. Int. J. Climatol. 44, 1549–1565 (2024).
Cui, F. et al. Interactions between the summer urban heat islands and heat waves in Beijing during 2000–2018. Atmos. Res. 291, 106813 (2023).
Kamath, H. G. et al. Global building heights for urban studies (UT-GLOBUS) for city- and street- scale urban simulations: development and first applications. Sci. Data 11, 886 (2024).
Cheng, Y. et al. U-Surf: a global 1 km spatially continuous urban surface property dataset for kilometer-scale urban-resolving Earth system modeling. Earth Syst. Sci. Data Discuss. 1–38 https://doi.org/10.5194/essd-2024-416 (2024).
Liao, W. et al. GloUCP: a global 1 km spatially continuous urban canopy parameters for the WRF model. Earth Syst. Sci. Data 17, 2535–2551 (2025).
Riahi, K. et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).
Giorgi, F., Coppola, E., Teichmann, C. & Jacob, D. Editorial for the CORDEX-CORE experiment I special issue. Clim. Dyn. 57, 1265–1268 (2021).
Remedio, A. R. et al. Evaluation of new CORDEX simulations using an updated köppen–trewartha climate classification. Atmosphere 10, 726 (2019).
Teichmann, C. et al. Assessing mean climate change signals in the global CORDEX-CORE ensemble. Clim. Dyn. 57, 1269–1292 (2021).
Jackson, T. L., Feddema, J. J., Oleson, K. W., Bonan, G. B. & Bauer, J. T. Parameterization of urban characteristics for global climate modeling. Ann. Assoc. Am. Geogr. 100, 848–865 (2010).
Oleson, K., Feddema, J. J. & Kaufmann, B. THESIS tools datasets: urban properties tool. UCAR/NCAR - GDEX https://doi.org/10.5065/ZRPH-DQ73 (2021).
Kotlarski, S. A Subgrid Glacier Parameterisation for Use in Regional Climate Modelling (University of Hamburg, 2007).
Semmler, T., Jacob, D., Schlünzen, K. H. & Podzun, R. Influence of sea ice treatment in a regional climate model on boundary layer values in the Fram Strait region. Mon. Weather Rev. 132, 985–999 (2004).
Hagemann, S. An Improved Land Surface Parameter Dataset for Global and Regional Climate Models. 21 https://pure.mpg.de/rest/items/item_2344576_7/component/file_3192501/content (2002).
Hagemann, S., Botzet, M., Dümenil, L. & Machenhauer, B. Derivation of Global GCM Boundary Conditions from 1 Km Land Use Satellite Data. https://hdl.handle.net/21.11116/0000-0001-2C5E-6 (1999).
Eidenshink, J. C. & Faundeen, J. L. The 1 km AVHRR global land data set: first stages in implementation. Int. J. Remote Sens. 15, 3443–3462 (1994).
USGS. USGS EROS archive—land cover products—global land cover characterization (GLCC). https://doi.org/10.5066/F7GB230D (2002).
Rechid, D., Raddatz, T. J. & Jacob, D. Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor. Appl. Climatol. 95, 245–255 (2009).
Pietikäinen, J.-P. et al. REMO2020: a modernized modular regional climate model. EGUsphere 1–57 https://doi.org/10.5194/egusphere-2025-1586 (2025).
Brousse, O., Martilli, A., Foley, M., Mills, G. & Bechtel, B. WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Clim. 17, 116–134 (2016).
Varentsov, M., Fenner, D., Meier, F., Samsonov, T. & Demuzere, M. Quantifying local and mesoscale drivers of the urban heat island of Moscow with reference and crowdsourced observations. Front. Environ. Sci. 9, 716968 (2021).
Li, C., Zhang, N., Wang, Y. & Chen, Y. Modeling urban heat islands and thermal comfort during a heat wave event in East China with CLM5 incorporating local climate zones. J. Geophys. Res. Atmos. 128, e2023JD038883 (2023).
Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).
Diez-Sierra, J. et al. The worldwide C3S CORDEX grand ensemble: a major contribution to assess regional climate change in the IPCC AR6 atlas. Bull. Am. Meteorol. Soc. 103, E2804–E2826 (2022).
Chakraborty, T. & Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 74, 269–280 (2019).
Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).
Rozenfeld, H. D. et al. Laws of population growth. Proc. Natl. Acad. Sci. USA 105, 18702–18707 (2008).
Sismanidis, P., Bechtel, B., Perry, M. & Ghent, D. The seasonality of surface urban heat islands across climates. Remote Sens. 14, 2318 (2022).
Venter, Z. S., Chakraborty, T. & Lee, X. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 7, eabb9569 (2021).
Zhou, B., Rybski, D. & Kropp, J. P. On the statistics of urban heat island intensity. Geophys. Res. Lett. 40, 5486–5491 (2013).
Diez-Sierra, J. et al. A global CORDEX-based dataset delineating urban areas and their surroundings to assess climate change in megacities. Sci. Data 12, 1961 (2025).
Shastri, H., Barik, B., Ghosh, S., Venkataraman, C. & Sadavarte, P. Flip flop of day-night and summer-winter surface urban heat island intensity in India. Sci. Rep. 7, 40178 (2017).
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. 29, 897–910 (2012).
Melchiorri, M. et al. Stats in the City: The GHSL Urban Centre Database 2025: Public Release GHS UCDB R2024 (Publications Office of the European, 2024).
We would like to thank the World Climate Research Programme (WCRP) and the COordinated Regional climate Downscaling EXperiment (CORDEX) for their endorsement and support to the CORDEX Flagship Pilot Study URB-RCC. We wish to thank the partners of the WCRP CORDEX FPS URB-RCC for their engagement and contributions to the initiative. M.D. is supported by the European Union’s HORIZON Research and Innovation Actions under grant agreement No 101137851, project CARMINE (Climate-Resilient Development Pathways in Metropolitan Regions of Europe, https://www.carmine-project.eu). D.R. acknowledges support from the European Union’s HORIZON project FOCAL - Efficient Exploration of Climate Data Locally—under grant agreement No.101137787. J.F. acknowledges support from the European Union’s HORIZON Research and Innovation Actions under grant agreement No 101081555, project IMPETUS4CHANGE. G.S.L. and J.F. acknowledge support from project PROTECT (PID2023-149997OA-I00), funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU. T.H. acknowledges support from the European Union’s HORIZON Research and Innovation Actions under grant agreement No 101081555, project IMPETUS4CHANGE and by the Johannes Amos Comenius Programme (OP JAC) project No. CZ.02.01.01/00/22_008/0004605, Natural and anthropogenic georisk.
G.S.L., T.H., and P.H. initiated the study as part of the CORDEX FPS URB-RCC proposal. G.S.L., J.F., M.D., and J.D.S. developed the conceptual approach together with the rest of co-authors. M.D. conducted the land-use analysis. J.F., J.D.S., Y.Q., and G.S.L. conducted the urban heat island analysis. G.S.L., J.F., M.D., J.D.S., L.F., N.Z., R.N., K.P.C., T.H., J.Y., P.H., and J.P.P. developed the city selection approach, and G.S.L., J.F., J.D.S., L.F., N.Z., and R.N. conducted the associated analysis. J.P.P. and G.G. produced the urban fraction data from the models. G.S.L., J.F., M.D., and J.D.S. took the lead on writing the manuscript. Y.Q., L.F., N.Z., R.N., A.F.C., K.P.C., G.G., T.H., P.H., L.E.M., J.P.P., D.R., and J.Y. revised and improved the initial draft. All authors contributed to writing and revising the manuscript.
The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Langendijk, G.S., Fernandez, J., Demuzere, M. et al. Representation of global mega-cities and their urban heat island in CORDEX-CORE regional climate model simulations. npj Urban Sustain (2025). https://doi.org/10.1038/s42949-025-00325-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42949-025-00325-6