资源环境科技发展态势分析平台

  • 首页
  • 数据浏览
  • 知识图谱
  • 态势分析
  • 报告产品
登录  |  注册
  1. 首页
  2. 期刊论文
  3. 详情

Representation of global mega-cities and their urban heat island in CORDEX-CORE regional climate model simulations

2025-12-30
查看原文
Gaby S. Langendijk, Jesus Fernandez, Matthias Demuzere, Javier Diez-Sierra, Yaiza Quintana, Lluis Fita, Natalia Zazulie, Rita Nogherotto, Andrea F. Carril, Kwok Pan Chun, Graziano Giuliani, Tomas Halenka, Peter Hoffmann, Luis E. Muñoz, Joni-Pekka Pietikäinen, Diana Rechid, Jiacan Yuan

Abstract

Cities are highly vulnerable to climate change, yet the interactions between urban and regional climate remain insufficiently understood, especially over climate changes timescales and when comparing cities globally. Therefore, this study assesses the capabilities of two CORDEX-CORE regional climate models (REMO and RegCM) in representing urban areas globally, focusing on land-surface characteristics and urban heat island (UHI) evaluation. Despite their relatively coarse resolution (~25 km), the two models can capture urban imprints of large cities. RegCM, with a single-layer urban canopy parameterization, represents the UHI, especially at night. REMO tends to underestimate nighttime UHI due to its simple bulk urban scheme. Across models, impervious surface areas are consistently underestimated, with notable geographic imbalances across the world. Going forward, regional climate model simulations for cities require both enhanced urban parameterizations and the integration of refined urban land-use data.

Data availability

CORDEX-CORE and EURO-CORDEX data for daily maximum and minimum near surface temperature, orography, and land area fraction are publicly available through ESGF (https://esgf-data.dkrz.de/search/cordex-dkrz/). Urban and impervious surface area (ISA) fractions were collected and post-processed as part of this work and have been made publicly available on Zenodo (v1.0.0, https://doi.org/10.5281/zenodo.15700266). In addition, we provide detailed summary statistics for ISA - covering all cities, reference products, and model outputs, including mean values, percentiles (P0, 5, 25, 50, 75, 90, 100), and the number of pixels exceeding ISA thresholds of 0 and 0.1—available as both GeoJSON and CSV files on Zenodo (v1, https://doi.org/10.5281/zenodo.17313478).

Code availability

The Python code for city selection, impervious surface fraction calculation and related tasks is available on GitHub (https://github.com/FPS-URB-RCC/CORDEX-CORE-WG). The Python code for the urban heat island analysis is also available on GitHub (https://github.com/FPS-URB-RCC/urclimask).

References

  1. Dodman, D. et al. Cities, settlements and key infrastructure. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [eds. Pörtner, H.-O. et al.] 907–1040 (Cambridge University Press, USA).

  2. UN Habitat. Guiding Principles for City Climate Action Planning. 40 https://unhabitat.org/guiding-principles-for-city-climate-action-planning (2015).

  3. Masson, V., Lemonsu, A., Hidalgo, J. & Voogt, J. Urban Climates and Climate Change. Annu. Rev. Environ. Resour. 45, 411–444 (2020).

    Google Scholar 

  4. Oke, T. R., Mills, G., Christen, A. & Voogt, J. A. Urban Climates (Cambridge University Press, 2017).

  5. Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M. & McAlpine, C. A. The impact of urbanization and climate change on urban temperatures: a systematic review. Landsc. Ecol. 32, 1921–1935 (2017).

    Google Scholar 

  6. Hertwig, D., Ng, M., Grimmond, S., Vidale, P. L. & McGuire, P. C. High-resolution global climate simulations: representation of cities. Int. J. Climatol. 41, 3266–3285 (2021).

    Google Scholar 

  7. Katzfey, J., Schlünzen, H., Hoffmann, P. & Thatcher, M. How an urban parameterization affects a high-resolution global climate simulation. Q. J. R. Meteorol. Soc. 146, 3808–3829 (2020).

    Google Scholar 

  8. Katzfey, J., Schlünzen, K. H. & Hoffmann, P. Effects of urban areas on the diurnal cycle of temperature and precipitation in a global climate simulation. Q. J. R. Meteorol. Soc. 150, 4885–4914 (2024).

    Google Scholar 

  9. Oleson, K. W. & Feddema, J. Parameterization and surface data improvements and new capabilities for the community land model urban (CLMU). J. Adv. Model. Earth Syst. 12, e2018MS001586 (2020).

    Google Scholar 

  10. Argüeso, D., Evans, J. P., Fita, L. & Bormann, K. J. Temperature response to future urbanization and climate change. Clim. Dyn. 42, 2183–2199 (2014).

    Google Scholar 

  11. Hamdi, R. et al. The state-of-the-art of urban climate change modeling and observations. Earth Syst. Environ. 4, 631–646 (2020).

    Google Scholar 

  12. Nazarian, N. et al. Integration of urban climate research within the global climate change discourse. PLoS Clim. 3, e0000473 (2024).

    Google Scholar 

  13. Langendijk, G. S., Rechid, D. & Jacob, D. Urban areas and urban–rural contrasts under climate change: what does the EURO-CORDEX ensemble tell us?—investigating near surface humidity in Berlin and its surroundings. Atmosphere 10, 730 (2019).

    Google Scholar 

  14. Langendijk, G. S., Rechid, D., Sieck, K. & Jacob, D. Added value of convection-permitting simulations for understanding future urban humidity extremes: case studies for Berlin and its surroundings. Weather Clim. Extrem. 33, 100367 (2021).

    Google Scholar 

  15. Langendijk, G. S. et al. Towards better understanding the urban environment and its interactions with regional climate change—the WCRP CORDEX Flagship Pilot Study URB-RCC. Urban Clim. 58, 102165 (2024).

    Google Scholar 

  16. Michau, Y., Lemonsu, A., Lucas-Picher, P., Schneider, M. & Caillaud, C. On the future evolution of heatwaves in French cities and associated rural areas: insights from a convection-permitting model. Urban Clim. 55, 101920 (2024).

    Google Scholar 

  17. Giorgi, F. et al. The CORDEX-CORE EXP-I initiative: description and highlight results from the initial analysis. Bull. Am. Meteorol. Soc. 103, E293–E310 (2022).

    Google Scholar 

  18. Jacob, D. et al. Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Reg. Environ. Change 20, 51 (2020).

    Google Scholar 

  19. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  20. CORDEX. CORDEX experiment design for dynamical downscaling of CMIP6. https://doi.org/10.5281/ZENODO.15199301 (2025).

  21. Langendijk, G. S. et al. CORDEX-CORE urban and impervious surface area dataset (1.0.0). Zenodo https://doi.org/10.5281/zenodo.15700267 (2025).

  22. Karra, K. et al. Global land use/land cover with Sentinel 2 and deep learning. In 2021, IEEE International Geoscience and Remote Sensing Symposium IGARSS 4704–4707 (IEEE, 2021).

  23. Zanaga, D. et al. ESA WorldCover 10 m 2020 v100. [object Object] https://doi.org/10.5281/ZENODO.5571936 (2021).

  24. Demuzere, M. et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst. Sci. Data 14, 3835–3873 (2022).

    Google Scholar 

  25. Chakraborty, T. et al. Large disagreements in estimates of urban land across scales and their implications. Nat. Commun. 15, 9165 (2024).

    Google Scholar 

  26. Florczyk, A. et al. GHS-UCDB R2019A - GHS Urban Centre Database 2015, multitemporal and multidimensional attributes. European Commission, Joint Research Centre (JRC) https://doi.org/10.2905/53473144-B88C-44BC-B4A3-4583ED1F547E (2019).

  27. Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Google Scholar 

  28. Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).

    Google Scholar 

  29. Daniel, M. et al. Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions. Clim. Dyn. 52, 2745–2764 (2019).

    Google Scholar 

  30. Mohan, M. et al. Assessment of urban heat island intensities over Delhi. In 4 (Yokohama, 2009).

  31. Siswanto, S. et al. Spatio-temporal characteristics of urban heat Island of Jakarta metropolitan. Remote Sens. Appl. Soc. Environ. 32, 101062 (2023).

    Google Scholar 

  32. Lozada, M. & Camilloni, I. Variabilidad espacio-temporal de la isla de calor superficial en tres ciudades argentinas. Meteorologica 47, e012–e012 (2022).

    Google Scholar 

  33. Rajeswari, J. R. et al. Urban heat island phenomenon in a desert, coastal city: the impact of urbanization. Urban Clim. 56, 102016 (2024).

    Google Scholar 

  34. Freitag, B. M., Nair, U. S. & Niyogi, D. Urban modification of convection and rainfall in complex terrain. Geophys. Res. Lett. 45, 2507–2515 (2018).

    Google Scholar 

  35. Sátyro, Z. C., Farias, C., Candido, L. A. & Veiga, J. A. Urban sprawl can inhibit convection and decrease rainfall over an Amazonian city during a squall line type phenomenon. Urban Clim. 40, 101023 (2021).

    Google Scholar 

  36. Peterson, T. C. Assessment of urban versus rural in situ surface temperatures in the contiguous United States: no difference found. J. Clim. 16, 2941–2959 (2003).

    Google Scholar 

  37. Best, M. J. & Grimmond, C. S. B. Key conclusions of the first international urban land surface model comparison project. Bull. Am. Meteorol. Soc. 96, 805–819 (2015).

    Google Scholar 

  38. Grimmond, C. S. B. et al. The international urban energy balance models comparison project: first results from phase 1. J. Appl. Meteorol. Climatol. 49, 1268–1292 (2010).

    Google Scholar 

  39. Grimmond, C. S. B. et al. Initial results from Phase 2 of the international urban energy balance model comparison. Int. J. Climatol. 31, 244–272 (2011).

    Google Scholar 

  40. Jongen, H. J. et al. The water balance representation in urban-plumber land surface models. J. Adv. Model. Earth Syst. 16, e2024MS004231 (2024).

    Google Scholar 

  41. Lipson, M. J. et al. Evaluation of 30 urban land surface models in the Urban-PLUMBER project: phase 1 results. Q. J. R. Meteorol. Soc. 150, 126–169 (2024).

    Google Scholar 

  42. Lean, H. W. et al. The hectometric modelling challenge: Gaps in the current state of the art and ways forward towards the implementation of 100-m scale weather and climate models. Q. J. R. Meteorol. Soc. 150, 4671–4708 (2024).

    Google Scholar 

  43. Zhao, L. et al. Global multi-model projections of local urban climates. Nat. Clim. Change 11, 152–157 (2021).

    Google Scholar 

  44. Ching, J. et al. WUDAPT: an urban weather, climate, and environmental modeling infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 99, 1907–1924 (2018).

    Google Scholar 

  45. Demuzere, M., Argüeso, D., Zonato, A. & Kittner, J. W2W: a Python package that injects WUDAPT’s Local Climate Zone information in WRF. J. Open Source Softw. 7, 4432 (2022).

    Google Scholar 

  46. Demuzere, M., He, C., Martilli, A. & Zonato, A. Technical documentation for the hybrid 100-m global land cover dataset with Local Climate Zones for WRF. https://doi.org/10.5281/ZENODO.7670792 (2023).

  47. Campanale, A., Adinolfi, M., Raffa, M., Schulz, J.-P. & Mercogliano, P. Investigating urban heat islands over Rome and Milan during a summer period through the TERRA_URB parameterization in the ICON model. Urban Clim. 60, 102335 (2025).

    Google Scholar 

  48. Canton, J. & Dipankar, A. Climatological analysis of urban heat island effects in Swiss cities. Int. J. Climatol. 44, 1549–1565 (2024).

    Google Scholar 

  49. Cui, F. et al. Interactions between the summer urban heat islands and heat waves in Beijing during 2000–2018. Atmos. Res. 291, 106813 (2023).

    Google Scholar 

  50. Kamath, H. G. et al. Global building heights for urban studies (UT-GLOBUS) for city- and street- scale urban simulations: development and first applications. Sci. Data 11, 886 (2024).

    Google Scholar 

  51. Cheng, Y. et al. U-Surf: a global 1 km spatially continuous urban surface property dataset for kilometer-scale urban-resolving Earth system modeling. Earth Syst. Sci. Data Discuss. 1–38 https://doi.org/10.5194/essd-2024-416 (2024).

  52. Liao, W. et al. GloUCP: a global 1 km spatially continuous urban canopy parameters for the WRF model. Earth Syst. Sci. Data 17, 2535–2551 (2025).

    Google Scholar 

  53. Riahi, K. et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).

    Google Scholar 

  54. Giorgi, F., Coppola, E., Teichmann, C. & Jacob, D. Editorial for the CORDEX-CORE experiment I special issue. Clim. Dyn. 57, 1265–1268 (2021).

    Google Scholar 

  55. Remedio, A. R. et al. Evaluation of new CORDEX simulations using an updated köppen–trewartha climate classification. Atmosphere 10, 726 (2019).

    Google Scholar 

  56. Teichmann, C. et al. Assessing mean climate change signals in the global CORDEX-CORE ensemble. Clim. Dyn. 57, 1269–1292 (2021).

    Google Scholar 

  57. Jackson, T. L., Feddema, J. J., Oleson, K. W., Bonan, G. B. & Bauer, J. T. Parameterization of urban characteristics for global climate modeling. Ann. Assoc. Am. Geogr. 100, 848–865 (2010).

    Google Scholar 

  58. Oleson, K., Feddema, J. J. & Kaufmann, B. THESIS tools datasets: urban properties tool. UCAR/NCAR - GDEX https://doi.org/10.5065/ZRPH-DQ73 (2021).

  59. Kotlarski, S. A Subgrid Glacier Parameterisation for Use in Regional Climate Modelling (University of Hamburg, 2007).

  60. Semmler, T., Jacob, D., Schlünzen, K. H. & Podzun, R. Influence of sea ice treatment in a regional climate model on boundary layer values in the Fram Strait region. Mon. Weather Rev. 132, 985–999 (2004).

    Google Scholar 

  61. Hagemann, S. An Improved Land Surface Parameter Dataset for Global and Regional Climate Models. 21 https://pure.mpg.de/rest/items/item_2344576_7/component/file_3192501/content (2002).

  62. Hagemann, S., Botzet, M., Dümenil, L. & Machenhauer, B. Derivation of Global GCM Boundary Conditions from 1 Km Land Use Satellite Data. https://hdl.handle.net/21.11116/0000-0001-2C5E-6 (1999).

  63. Eidenshink, J. C. & Faundeen, J. L. The 1 km AVHRR global land data set: first stages in implementation. Int. J. Remote Sens. 15, 3443–3462 (1994).

    Google Scholar 

  64. USGS. USGS EROS archive—land cover products—global land cover characterization (GLCC). https://doi.org/10.5066/F7GB230D (2002).

  65. Rechid, D., Raddatz, T. J. & Jacob, D. Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor. Appl. Climatol. 95, 245–255 (2009).

    Google Scholar 

  66. Pietikäinen, J.-P. et al. REMO2020: a modernized modular regional climate model. EGUsphere 1–57 https://doi.org/10.5194/egusphere-2025-1586 (2025).

  67. Brousse, O., Martilli, A., Foley, M., Mills, G. & Bechtel, B. WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Clim. 17, 116–134 (2016).

    Google Scholar 

  68. Varentsov, M., Fenner, D., Meier, F., Samsonov, T. & Demuzere, M. Quantifying local and mesoscale drivers of the urban heat island of Moscow with reference and crowdsourced observations. Front. Environ. Sci. 9, 716968 (2021).

    Google Scholar 

  69. Li, C., Zhang, N., Wang, Y. & Chen, Y. Modeling urban heat islands and thermal comfort during a heat wave event in East China with CLM5 incorporating local climate zones. J. Geophys. Res. Atmos. 128, e2023JD038883 (2023).

    Google Scholar 

  70. Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).

    Google Scholar 

  71. Diez-Sierra, J. et al. The worldwide C3S CORDEX grand ensemble: a major contribution to assess regional climate change in the IPCC AR6 atlas. Bull. Am. Meteorol. Soc. 103, E2804–E2826 (2022).

    Google Scholar 

  72. Chakraborty, T. & Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 74, 269–280 (2019).

    Google Scholar 

  73. Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).

    Google Scholar 

  74. Rozenfeld, H. D. et al. Laws of population growth. Proc. Natl. Acad. Sci. USA 105, 18702–18707 (2008).

    Google Scholar 

  75. Sismanidis, P., Bechtel, B., Perry, M. & Ghent, D. The seasonality of surface urban heat islands across climates. Remote Sens. 14, 2318 (2022).

    Google Scholar 

  76. Venter, Z. S., Chakraborty, T. & Lee, X. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 7, eabb9569 (2021).

    Google Scholar 

  77. Zhou, B., Rybski, D. & Kropp, J. P. On the statistics of urban heat island intensity. Geophys. Res. Lett. 40, 5486–5491 (2013).

    Google Scholar 

  78. Diez-Sierra, J. et al. A global CORDEX-based dataset delineating urban areas and their surroundings to assess climate change in megacities. Sci. Data 12, 1961 (2025).

    Google Scholar 

  79. Shastri, H., Barik, B., Ghosh, S., Venkataraman, C. & Sadavarte, P. Flip flop of day-night and summer-winter surface urban heat island intensity in India. Sci. Rep. 7, 40178 (2017).

    Google Scholar 

  80. Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. 29, 897–910 (2012).

    Google Scholar 

  81. Melchiorri, M. et al. Stats in the City: The GHSL Urban Centre Database 2025: Public Release GHS UCDB R2024 (Publications Office of the European, 2024).

Download references

Acknowledgements

We would like to thank the World Climate Research Programme (WCRP) and the COordinated Regional climate Downscaling EXperiment (CORDEX) for their endorsement and support to the CORDEX Flagship Pilot Study URB-RCC. We wish to thank the partners of the WCRP CORDEX FPS URB-RCC for their engagement and contributions to the initiative. M.D. is supported by the European Union’s HORIZON Research and Innovation Actions under grant agreement No 101137851, project CARMINE (Climate-Resilient Development Pathways in Metropolitan Regions of Europe, https://www.carmine-project.eu). D.R. acknowledges support from the European Union’s HORIZON project FOCAL - Efficient Exploration of Climate Data Locally—under grant agreement No.101137787. J.F. acknowledges support from the European Union’s HORIZON Research and Innovation Actions under grant agreement No 101081555, project IMPETUS4CHANGE. G.S.L. and J.F. acknowledge support from project PROTECT (PID2023-149997OA-I00), funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU. T.H. acknowledges support from the European Union’s HORIZON Research and Innovation Actions under grant agreement No 101081555, project IMPETUS4CHANGE and by the Johannes Amos Comenius Programme (OP JAC) project No. CZ.02.01.01/00/22_008/0004605, Natural and anthropogenic georisk.

Author information

Authors and Affiliations

  1. Climate Adaptation and Disaster Risk Department, Deltares, Delft, the Netherlands

    Gaby S. Langendijk

  2. Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

    Jesus Fernandez, Javier Diez-Sierra & Yaiza Quintana

  3. B-Kode VOF, Ghent, Belgium

    Matthias Demuzere

  4. Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina

    Lluis Fita, Natalia Zazulie, Andrea F. Carril & Luis E. Muñoz

  5. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

    Lluis Fita, Natalia Zazulie & Andrea F. Carril

  6. Instituto Franco-Argentino Para el Estudio del Clima y sus Impactos (IRL IFAECI/UBA-CONICET-CNRS-IRD), Buenos Aires, Argentina

    Lluis Fita, Andrea F. Carril & Luis E. Muñoz

  7. The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy

    Natalia Zazulie, Rita Nogherotto & Graziano Giuliani

  8. The Institute of Atmospheric Sciences and Climate of the Italian National Research Council (CNR-ISAC), Bologna, Italy

    Rita Nogherotto

  9. University of the West of England, Bristol, UK

    Kwok Pan Chun

  10. Charles University, Faculty of Mathematics and Physics, Department of Atmospheric Physics, Prague, Czechia

    Tomas Halenka

  11. Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Hamburg, Germany

    Peter Hoffmann, Joni-Pekka Pietikäinen & Diana Rechid

  12. Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China

    Jiacan Yuan

Authors
  1. Gaby S. Langendijk
    View author publications

    Search author on:PubMed Google Scholar

  2. Jesus Fernandez
    View author publications

    Search author on:PubMed Google Scholar

  3. Matthias Demuzere
    View author publications

    Search author on:PubMed Google Scholar

  4. Javier Diez-Sierra
    View author publications

    Search author on:PubMed Google Scholar

  5. Yaiza Quintana
    View author publications

    Search author on:PubMed Google Scholar

  6. Lluis Fita
    View author publications

    Search author on:PubMed Google Scholar

  7. Natalia Zazulie
    View author publications

    Search author on:PubMed Google Scholar

  8. Rita Nogherotto
    View author publications

    Search author on:PubMed Google Scholar

  9. Andrea F. Carril
    View author publications

    Search author on:PubMed Google Scholar

  10. Kwok Pan Chun
    View author publications

    Search author on:PubMed Google Scholar

  11. Graziano Giuliani
    View author publications

    Search author on:PubMed Google Scholar

  12. Tomas Halenka
    View author publications

    Search author on:PubMed Google Scholar

  13. Peter Hoffmann
    View author publications

    Search author on:PubMed Google Scholar

  14. Luis E. Muñoz
    View author publications

    Search author on:PubMed Google Scholar

  15. Joni-Pekka Pietikäinen
    View author publications

    Search author on:PubMed Google Scholar

  16. Diana Rechid
    View author publications

    Search author on:PubMed Google Scholar

  17. Jiacan Yuan
    View author publications

    Search author on:PubMed Google Scholar

Contributions

G.S.L., T.H., and P.H. initiated the study as part of the CORDEX FPS URB-RCC proposal. G.S.L., J.F., M.D., and J.D.S. developed the conceptual approach together with the rest of co-authors. M.D. conducted the land-use analysis. J.F., J.D.S., Y.Q., and G.S.L. conducted the urban heat island analysis. G.S.L., J.F., M.D., J.D.S., L.F., N.Z., R.N., K.P.C., T.H., J.Y., P.H., and J.P.P. developed the city selection approach, and G.S.L., J.F., J.D.S., L.F., N.Z., and R.N. conducted the associated analysis. J.P.P. and G.G. produced the urban fraction data from the models. G.S.L., J.F., M.D., and J.D.S. took the lead on writing the manuscript. Y.Q., L.F., N.Z., R.N., A.F.C., K.P.C., G.G., T.H., P.H., L.E.M., J.P.P., D.R., and J.Y. revised and improved the initial draft. All authors contributed to writing and revising the manuscript.

Corresponding author

Correspondence to Jesus Fernandez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langendijk, G.S., Fernandez, J., Demuzere, M. et al. Representation of global mega-cities and their urban heat island in CORDEX-CORE regional climate model simulations. npj Urban Sustain (2025). https://doi.org/10.1038/s42949-025-00325-6

Download citation

  • Received: 22 June 2025

  • Accepted: 12 December 2025

  • Published: 30 December 2025

  • DOI: https://doi.org/10.1038/s42949-025-00325-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Subjects

  • Atmospheric science
  • Climate change
  • Climate sciences

关于我们

面向碳中和与碳达峰研究领域,汇聚国内外相关研究进展,提供全球双碳领域开放数据和知识资源的智能感知、自动汇聚、关联融合与集成服务,面向科学决策和行业部门提供情报咨询服务。

联系我们

甘肃省兰州市天水中路
0931-8274859
gstded@llas.ac.cn

Copyright © 2022 中国科学院西北生态环境资源研究院文献情报中心 - Powered by SciEye