资源环境科技发展态势分析平台

  • 首页
  • 数据浏览
  • 知识图谱
  • 态势分析
  • 报告产品
登录  |  注册
  1. 首页
  2. 期刊论文
  3. 详情

Atmospheric rivers as mediators between climate teleconnections and burned area variability in North America

2025-12-30
查看原文
Flavio Justino, David H. Bromwich, Carlos Gurjão

Abstract

This study identifies atmospheric rivers (ARs) as key mediators linking large-scale climate teleconnections, the El Niño-Southern Oscillation (ENSO), Pacific-North American pattern (PNA), and Arctic Oscillation (AO), to variations in vegetation activity (NDVI) and burned area (BA) across North America. The results highlight the central role of ARs in shaping regional fire regimes and improving prospects for seasonal fire prediction. Distinct spatial and lag-dependent responses emerge: ENSO-driven precipitation promotes vegetation greening in northwestern Canada at longer lags, whereas browning dominates Alaska and northeastern Canada. The PNA exerts a dominant influence, suppressing NDVI across the eastern United States and central Canada at longer lags, while promoting greening in Alaska at shorter ones. AO effects often counter those of ENSO, driving vegetation drying in the southern United States and southwestern Canada at short lags, and in central Canada and Alaska at longer timescales. ARs exert a strong control over burned area, particularly across northern Canada and Alaska. When AR variability is incorporated, much of the fire enhancement previously attributed to teleconnection phases is reversed, indicating that AR-teleconnection interactions play a pivotal role in modulating the timing and magnitude of vegetation and fire responses across North America.

Data availability

Code to replicate these analyses are available at the Zenodo https://doi.org/10.5281/zenodo.17860684. The SLP, U10, V10 and T2m used here are public available at the ERA5 website https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview. Atmospheric rivers frequency and precipitation are available at UCLA website https://ucla.app.box.com/v/arcatalog/.

References

  1. Ralph, F. M. et al. A scale to characterize the strength and impacts of atmospheric rivers. Bull. Am. Meteorol. Soc. 100, 269–289 (2019).

    Google Scholar 

  2. Zhu, Y. & Newell, R. E. Atmospheric rivers and bombs. Geophys. Res. Lett. 21, 1999–2002 (1994).

    Google Scholar 

  3. Guan, B., Waliser, D. E., Ralph, F. M., Fetzer, E. J. & Neiman, P. J. Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett. 43, 2964–2973 (2016).

    Google Scholar 

  4. Bozkurt, D., Ezber, Y. & Sen, O. L. Role of the east asian trough on eastern mediterranean temperature variability in early spring and the extreme case of the 2004 warm spell. Clim. Dyn. 53, 2309–2326 (2019).

    Google Scholar 

  5. Bozkurt, D. et al. Influence of African atmospheric rivers on precipitation and snowmelt in the Near East’s highlands. J. Geophys. Res. Atmos. 126, e2020JD033646 (2021).

    Google Scholar 

  6. Cayan, D. R. et al. The transboundary setting of California’s water and hydropower systems: Linkages between the Sierra Nevada, Columbia, and Colorado hydroclimates. In Climate and Water: Transboundary Challenges in the Americas 237–262 (Springer, 2003).

  7. Collow, A. B. M. et al. An overview of ARTMIP’s Tier 2 reanalysis intercomparison: uncertainty in the detection of atmospheric rivers and their associated precipitation. J. Geophys. Res. Atmos. 127, e2021JD036155 (2022).

    Google Scholar 

  8. Nash, E. R., Waliser, D. E. & Guan, B. The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).

    Google Scholar 

  9. Gershunov, A. & Guirguis, K. California heat waves in the present and future. Geophys. Res. Lett. 39, L18710 (2012).

  10. Gao, Y., Lu, J. & Leung, L. R. Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over europe. J. Clim. 29, 6711–6726 (2016).

  11. Payne, A. E. et al. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 1, 143–157 (2020).

    Google Scholar 

  12. Guirguis, K. et al. Four atmospheric circulation regimes over the North Pacific and their relationship to California precipitation on daily to seasonal timescales. Geophys. Res. Lett. 47, e2020GL087609 (2020).

    Google Scholar 

  13. Dettinger, M. D. Atmospheric rivers as drought busters on the US West Coast. J. Hydrometeorol. 14, 1721–1732 (2013).

    Google Scholar 

  14. Gimeno, L. et al. The residence time of water vapour in the atmosphere. Nat. Rev. Earth Environ. 2, 558–569 (2021).

    Google Scholar 

  15. Guan, B. & Waliser, D. E. Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos. 120, 12514–12535 (2015).

    Google Scholar 

  16. Mateling, M. E. et al. The influence of atmospheric rivers on cold-season precipitation in the upper Great Lakes region. J. Geophys. Res. Atmos. 126, e2021JD034754 (2021).

    Google Scholar 

  17. Zhou, Y. et al. Uncertainties in atmospheric river lifecycles by detection algorithms: climatology and variability. J. Geophys. Res. Atmos. 126, e2020JD033711 (2021).

  18. Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J. & Cayan, D. R. Atmospheric rivers, floods and the water resources of California. Water 3, 445–478 (2011).

    Google Scholar 

  19. Higgins, T. B. et al. Using deep learning for an analysis of atmospheric rivers in a high-resolution large ensemble climate data set. J. Adv. Modeling Earth Syst. 15, e2022MS003495 (2023).

    Google Scholar 

  20. Guan, B. & Nigam, S. Pacific–North American teleconnection tumbles snowfall records west of the Cascades during Christmas week 2021. Bull. Am. Meteorol. Soc. 104, E1314–E1322 (2023).

    Google Scholar 

  21. Liner, S., Ryoo, J.-M. & Chiao, S. On the relationship of Arctic Oscillation with atmospheric rivers and snowpack in the western United States using long-term multi-platform dataset. Water 14, 2392 (2022).

  22. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western us forest wildfire activity. Science 313, 940–943 (2006).

    Google Scholar 

  23. Albano, C. M., Dettinger, M. D. & Soulard, C. E. Influence of atmospheric rivers on vegetation productivity and fire patterns in the southwestern U.S. J. Geophys. Res. Biogeosciences 122, 308–323 (2017).

    Google Scholar 

  24. Justino, F., Bromwich, D. H., Schumacher, V., da Silva, A. & Wang, S.-H. Arctic oscillation and Pacific–North American pattern dominated-modulation of fire danger and wildfire occurrence. npj Clim. Atmos. Sci. 5, 1–13 (2022).

    Google Scholar 

  25. Ryoo, J.-M. & Park, T. Contrasting characteristics of atmospheric rivers and their impacts on 2016 and 2020 wildfire seasons over the western United States. Environ. Res. Lett. 18, 074010 (2023).

    Google Scholar 

  26. Turco, M., Abatzoglou, J. T., Herrera, S. & Cvijanovic, I. Anthropogenic climate change impacts exacerbate summer forest fires in California. Proc. Natl Acad. Sci. 120, e2213815120 (2023).

    Google Scholar 

  27. Abatzoglou, J. T. et al. Projected increases in western us forest fire despite growing fuel constraints. Commun. Earth Environ. 2, 1–8 (2021).

    Google Scholar 

  28. Guan, B. & Waliser, D. E. Tracking atmospheric rivers globally: spatial distributions and temporal evolution of life cycle characteristics. J. Geophys. Res. Atmos. 124, 12523–12552 (2019).

    Google Scholar 

  29. Diffenbaugh, N. S., Swain, D. L. & Touma, D. E. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. 112, 3931–3936 (2015).

    Google Scholar 

  30. Williams, A. P., Cook, B. I. & Smerdon, J. E. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Google Scholar 

  31. Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western us forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).

    Google Scholar 

  32. Beckage, B., Platt, W. J., Slocum, M. G. & Panko, B. Recent trends in seasonal variation in lightning-caused wildfire activity in the southeastern United States. Can. J. Res. 33, 532–541 (2003).

    Google Scholar 

  33. Kitzberger, T., Brown, P. M., Heyerdahl, E. K., Swetnam, T. W. & Veblen, T. T. Climatic controls of fire regimes in South America and their ecological effects. Ecol. Appl. 17, 1709–1721 (2007).

    Google Scholar 

  34. Liu, K.-b, Fearn, M. L. & Lu, H. Climate change and the vulnerability of the US Gulf Coast to hurricane impacts. Clim. Chang. 107, 411–428 (2011).

    Google Scholar 

  35. Prestemon, J. P., Abt, K. L. & Gebert, K. M. Wildfire ignitions: a review of the science and recommendations for empirical modeling. Int. J. Wildland Fire 25, 963–979 (2016).

    Google Scholar 

  36. Franzke, C. L. E. et al. The structure of climate variability across scales. Rev. Geophys. 58, e2019RG000657 (2020).

    Google Scholar 

  37. Fedorov, A. V., Hu, S., Wittenberg, A. T., Levine, A. F. Z. & Deser, C. ENSO Low-Frequency Modulation and Mean State Interactions Ch. 8, 173–198 (American Geophysical Union (AGU), 2020).

  38. Bretherton, C. S., Smith, C. & Wallace, J. M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 12, 2224–2239 (1999).

    Google Scholar 

  39. Gillett, N. P. et al. Human influence on the 2021 British Columbia floods. Weather Clim. Extremes 36, 100441 (2022).

    Google Scholar 

  40. Meyn, A., Taylor, S. W., Flannigan, M. D., Thonicke, K. & Cramer, W. Relationship between fire, climate oscillations, and drought in British Columbia, Canada, 1920–2000. Glob. Change Biol. 16, 977–989 (2010).

    Google Scholar 

  41. Teleubay, Z., Quiring, S. M. & Leasor, Z. Estimation of impacts-based drought thresholds for the U.S. corn belt. Agric. Meteorol. 372, 110715 (2025).

    Google Scholar 

  42. Gershunov, A., Cayan, D. R. & Iacobellis, S. F. The Pacific decadal oscillation and the precipitation variability in California. J. Clim. 12, 3161–3177 (1999).

    Google Scholar 

  43. L’Heureux, M. L., Kumar, A., Hu, Z.-Z., Ren, H.-L. & Arroyo, A. The detection of El Niño–Southern Oscillation trends. J. Clim. 28, 7945–7965 (2015).

    Google Scholar 

  44. Payne, A. E. & Magnusdottir, G. The dynamical nature of the El Niño–Southern Oscillation influence on North Pacific and North American Atmospheric Rivers. J. Clim. 27, 7654–7674 (2014).

    Google Scholar 

  45. Abatzoglou, J. T., Williams, A. P. & Barbero, R. A. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 323–331 (2019).

    Google Scholar 

  46. Liu, Y., Wang, J., Chen, X. & Li, Z. The role of albedo and soil moisture in land surface temperature variations after wildfire in Alaska. Remote Sens. Environ. 211, 237–245 (2018).

    Google Scholar 

  47. Telesca, L. & Lasaponara, R. Pre- and post-fire behavioral trends revealed in satellite NDVI time series. Geophys. Res. Lett. 33, L14401 (2006).

    Google Scholar 

  48. Liu, Z., He, X., Ma, W. & Wang, Y. Robust increases in extreme Pacific North American events under greenhouse warming. Geophys. Res. Lett. 47, e2019GL086309 (2020).

    Google Scholar 

  49. Cohen, J. et al. Divergent consensuses on the influence of Arctic amplification on mid-latitude severe winter weather. Nat. Clim. Chang. 10, 209–216 (2020).

    Google Scholar 

  50. Nemani, R. R. & Running, S. W. Testing a theoretical climate–soil–leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric. Meteorol. 44, 245–260 (1989).

    Google Scholar 

  51. Karnieli, A. et al. Use of NDVI and land surface temperature for drought assessment: merits and limitations. J. Clim. 23, 618–633 (2010).

    Google Scholar 

  52. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  53. Ralph, F. M., Dettinger, M. D., Rutz, J. J. & Waliser, D. E. Atmospheric Rivers Vol. 1 (Springer, 2020).

  54. Neves, A. K. et al. Active fire-based dating accuracy for Landsat burned area maps is high in boreal and mediterranean biomes and low in grasslands and savannas. ISPRS J. Photogramm. Remote Sens. 209, 461–471 (2024).

    Google Scholar 

  55. Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

    Google Scholar 

  56. Justino, F. et al. Influence of local scale and oceanic teleconnections on regional fire danger and wildfire trends. Sci. Total Environ. 883, 163397 (2023).

    Google Scholar 

  57. Hlinka, J., Hartman, D., Vejmelka, M., Novotná, D. & Palus, M. Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity. Clim. Dynamics 42, 1873–1886 (2014).

Download references

Acknowledgements

The authors want to thank the funding support of Simon Foundation for visiting the International Centre for Theoretical Physics in Trieste, Italy. The CNPq funding 441744/2024-9 and 303882/2020, and the BPCRC Polar Meteorology Development Fund. Dr. Bin Guan provided the AR code.

Author information

Authors and Affiliations

  1. Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa, MG, Brazil

    Flavio Justino & Carlos Gurjão

  2. Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA

    David H. Bromwich

Authors
  1. Flavio Justino
    View author publications

    Search author on:PubMed Google Scholar

  2. David H. Bromwich
    View author publications

    Search author on:PubMed Google Scholar

  3. Carlos Gurjão
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.J., D.H.B., and C.G. designed the study. C.G. performed data processing and plotting, and F.J. and D.H.B. wrote a large portion of the manuscript.

Corresponding author

Correspondence to Flavio Justino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Nicola Colombo and Aliénor Lavergne. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Justino, F., Bromwich, D.H. & Gurjão, C. Atmospheric rivers as mediators between climate teleconnections and burned area variability in North America. Commun Earth Environ (2025). https://doi.org/10.1038/s43247-025-03124-0

Download citation

  • Received: 17 June 2025

  • Accepted: 09 December 2025

  • Published: 30 December 2025

  • DOI: https://doi.org/10.1038/s43247-025-03124-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Subjects

  • Climate sciences
  • Environmental sciences

关于我们

面向碳中和与碳达峰研究领域,汇聚国内外相关研究进展,提供全球双碳领域开放数据和知识资源的智能感知、自动汇聚、关联融合与集成服务,面向科学决策和行业部门提供情报咨询服务。

联系我们

甘肃省兰州市天水中路
0931-8274859
gstded@llas.ac.cn

Copyright © 2022 中国科学院西北生态环境资源研究院文献情报中心 - Powered by SciEye